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INTRODUCTION 
 

In haptic assistive/shared control, various approaches 

to adapting haptic assistance level to user’s skill level 

have been presented. However, most approaches, e.g., 

shared-control proxy model [1], assistance policy 

module [2], and haptic error field [3], did not facilitate 

the customization of the haptic assistive control that 

can adjust the assistance level based on both expert’s 

strategy and user performance. To address this 

problem, we present an approach to customizing 

haptic assistance utilizing expert’s strategy as well as 

user performance in [4] [5]. 
 

Although there have been ample considerations about 

adjusting assistance level, the efficacy of these 

methods on user performance has still remained 

inconclusive. Even when the assistance was 

customized based on various user characteristics, the 

improvements of user performance were not always 

observed explicitly [1] [5]. In this study, we propose 

an approach to predicting the potential improvement 

of user performance under a customized haptic 

assistance for each user. Specifically, we claim that 

user’s temporal and spatial characteristics measured 

when no haptic assistance was provided would 

determine whether or not the user performance will 

enhance when customized haptic assistance for the 

user is provided. A relationship between the proposed 

metrics and performance improvement is defined and 

validated via using machine learning techniques. 
 

METHODS 
 

Thirty nine young adults (31 male and 8 female, 

age=20-35 yrs) who regularly play a video game (at 

least once a week) participated in this study. We 

developed a driving simulator of a power-wheelchair 

using Unity3D (Unity Technologies, San Francisco, 

CA) since we considered the driving simulator as a 

good target application for rehabilitation. Subjects 

were seated at the virtual power-wheelchair simulator 

platform which provides visual display and force 

feedback by a 50 inch monitor screen and a 2D haptic 

interface, respectively (For more information see [4]). 

The subjects were given tasks in which they drive a 

virtual power-wheelchair as fast and safe as possible 

while monitoring the visual display under various 

scenarios. Each scenario provides a road with different 

curvatures and obstacles. All subjects gave informed 

consent prior to their participation and this research 

was proved by the University Institutional Review 

Board. 
 

The experiment consisted of two separate sessions. 

During the first session, no force feedback was 

applied to the subjects’ hand by the haptic joystick 

while the virtual power-wheelchair was being 

controlled. After the first session, each subject’s 

driving strategy was analyzed and represented by 

three parameters that describe 1) the curvature of the 

generated path, 2) its proximity to boundaries, and 3) 

the ratio between control effort and boundary collision 

avoidance. Then, haptic assistance was customized for 

each user based on three parameters that characterize 

their behaviors (For detailed explanation of our haptic 

assistance customization, please refer to [4] [5]). The 

second session was performed a week apart from the 

first session, and the customized haptic assistance was 

applied. For both sessions, there were four scenarios, 

and each scenario (road curvature and obstacle) was 

repeated three times. The sequence of presented 

scenario was randomized. The virtual wheelchair’s 
(𝑥, 𝑦) position, heading direction, and task-completion 

time were recorded from the start line to the finish line. 

Sampling frequency was 60Hz. 
 

After completing the two experimental sessions, the 

subjects’ performances in both sessions, under no 

assistance and the customized haptic assistance, were 

examined in terms of variability that was computed as 

the summed standard deviation of mean completion 

time of each scenario, ∑ (std(mean(4
𝑖=1 ∑ 𝑇𝑖,𝑗))3

𝑗=1 ) 

where i and j are indices for scenario and repetition. 

Then, we examined those subjects whose performance 

(i.e., variability) was improved when the customized 
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haptic assistance was applied. For the improved 

subjects, the temporal (time) and the spatial 

(geometric) characteristics of power-wheelchair path 

during the first session were expressed by two metrics: 

the designed variability and Hurst exponent obtained 

from detrended fluctuation analysis (DFA). Hurst 

exponent was utilized as the metric to tell us how well 

the controlled power-wheelchair path followed the 

reference trajectory since it represents the slow/fast 

varying characteristic of time course data [6] (see Fig. 

1). Consequently, each subject was associated with 

two metrics as the following format: subject#{V, H} 

where V and H represent variability and Hurst 

exponent value, respectively, from the first session. 

 

With the associated two metrics above, a performance 

improvement predictor (PIP) function, denoted by 

𝑓𝑃𝐼𝑃 , could be defined by the following steps. First, 

among the subjects, 80% of the subjects’ metric data 

were randomly selected as a training set, and the other 

20% as a test set. Second, the distribution of improved 

subjects, 𝜑(𝐻) , along with H was estimated by a 

kernel density estimation. Third, logistic sigmoid 

function, 𝜎(𝑉), was trained so that it could classify 

improved/non-improved subjects with V. Finally, 𝑓𝑃𝐼𝑃 

was defined by 

 

𝑓𝑃𝐼𝑃(𝜑(𝐻), 𝜎(𝑉)) = {  
yes, if 𝜑(𝐻) ≥ 1 and 𝜎(𝑉) ≥ 0.5 
no,                             oherwise                  

 

 

Figure 2 shows an example of 𝜑(𝐻)  and 𝜎(𝑉) 

functions. The estimation of 𝜑(𝐻) and the training of 

𝜎(𝑉) were repeated 100 times. The evaluation result 

of 𝑓𝑃𝐼𝑃 with the test set will be presented in the next 

section. 
 

RESULTS AND DISCUSSION 
 

To validate the defined 𝑓𝑃𝐼𝑃 , the evaluation result is 

presented in terms of Youden’s index [7], J, which is 

defined by J = sensitivity + specificity – 1. Hence, the 

maximum J is 1. Figure 3 shows J values obtained 

from the 100 evaluations of 𝑓𝑃𝐼𝑃 . The average J is 

0.803 meaning the 𝑓𝑃𝐼𝑃  has 80.3% of accuracy in 

average. Also, the further investigation on H and V 

value revealed that the subjects whose 𝑉 ≥ 1.4  and 

1.55 ≤ 𝐻 ≤ 1.72  have the greater probability of 

performance improvement under the customized 

haptic assistance. 

 

CONCLUSION 
 

User’s performance improvement under customized 

haptic assistance could be predicted by investigating 

the temporospatial characteristics of controlled object 

trajectory. Further research should be followed in 

ways of comparing the predicted user performance 

improvement to actual performance improvement.  
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Figure 1: DFA example. Top: Controlled path (CP), reference 

path (RP), and distance from the CP and RP. Bottom: The 

reference path is employed as a baseline, and the distances 

from the reference path under no-assistance (magenta-dotted) 

and the customized haptic (green-solid) are depicted.  

     
Figure 2: Example of the estimated 𝜑(𝐻) and trained 𝜎(𝑉). 

Shaded regions are related to a prediction for improvement. 

 
Figure 3:  Youden’s index J resulted from 100 evaluations of 

𝑓𝑃𝐼𝑃. The average is 0.803.  


