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RESEARCH HIGHLIGHT

RESULTS

▪ The plastic deformation did not occur in both cases as 
shown in Fig. 4.

▪ In case of foot with RD 0.35, the stress was relatively 
evenly distributed in heel part compared to the foot with 
RD 0.55.

▪ The local failure (e.g., brittle failure), not as an elastic 
deformation, would be expected in a foot with RD 0.55 due 
to the stress concentration in the area near the ankle 
connection part.

▪ After the loading, the lattice structure with RD 0.35 
showed elastic deformation (e.g., strut rotation), but strut 
deformation was barely found with RD 0.55.

▪ The effects of auxetic structure on the energy absorption 
at the heel strike of the prosthesis was examined.

▪ Relative density (RD) of the auxetic structure played a 
significant role in the energy absorption at the heel strike.

Prosthetic foot design

▪ Although the design of prosthetic feet has been widely 
studied for the lower extremity amputees, several 
fundamental challenges still remain [1].

▪ One of the critical design challenges in prosthetic feet is 
the impact reduction at the heel strike.

Required foot properties at heel-strike

▪ Human walking consists of several events: heel-strike, 
foot-drop, heel-off, push-off, and toe-off [2].

▪ At heel-strike, the impact has to be carefully managed to 
protect the other parts from damage.

INTRODUCTION

Auxetic structure

▪ The foot shape was approximated as rectangular with a 
length of 250 mm and a width of 120 mm.

▪ The two types of foots with different relative density of 
structure were used to investigate the RD effect on the 
energy absorption; RD 0.35 and RD 0.55 in Fig. 2.

Auxetic structure

▪ Auxetic structures are a kind of special lattice structures 
with negative Poisson’s ratio

▪ It has received an attention due to its excellent 
mechanical properties, such as increased shear resistance 
and energy absorption [3].

Re-entrant honeycomb structure

▪ Specifically, the re-entrant honeycomb structure exhibits 
an increased energy absorption capacity compared to the 
conventional honeycomb [4].

Design parameters
▪ The geometric parameters of re-entrant structure are 

shown in Fig. 1.
▪ The relative density (RD) is the ratio of the volume of all 

struts in a unit cell to the apparent volume of the unit cell 
and can be described as followed:
𝜌

𝜌𝑠
=

2𝑙𝑡 + 1.75ℎ𝑡 + 2𝑡2

3ℎ𝑡 + 2ℎ𝑙𝑐𝑜𝑠𝜃 + 3𝑙𝑡𝑠𝑖𝑛𝜃 + 2𝑙2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃
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𝜌: density of bulk material
𝜌𝑠: density of unit cell strut
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Material properties

▪ Material properties were set as acrylonitrile butadiene 
styrene copolymer (ABS).

▪ The mechanical properties of materials were considered 
to be elastic perfectly plastic, isotropic and homogeneous.

Numerical analysis

▪ Structural behavior analysis was conducted using 
ABAQUS/CAE (v6.14, ABAQUS Inc., Velizy-Villacoublay, 
France).

▪ The geometry was meshed with 8-node hexagonal 
elements.

▪ The ankle connection part was constrained from moving 
in the x, y, and z directions.

▪ The FEA was performed through two steps.

▪ In the first step, the 1,000 N load was applied to bottom 
of hind foot for 1 second.

▪ In the second step, the load applied in previous step was 
removed to check the residual stress in structure.

Finite element analysis

CONCLUSIONS

It was observed that

▪ The decision of an appropriate RD is important to enhance 
the energy absorption behavior of the prosthetic foot for 
stable deformation at the heel strike.

▪ Foot with RD 0.35 showed 6 times higher deformation than 
the foot with RD 0.55 under the same loading condition.

▪ Under the same load condition, the foot with RD 0.35 
deformed 6.3 times larger than the foot with RD 0.55.

▪ The deformation of fore foot was much larger in the foot 
with RD 0.35 than that of the foot with RD 0.55 due to the 
bending deformation.

▪ Through these deformations, the foot with RD 0.35 shows 
more stable energy absorption.

▪ With the higher RD (e.g., RD 0.55), the slenderness ratio of 
the strut increases, making the structure more brittle.

▪ The brittle properties of the foot with RD 0.55 can lead to 
instability behavior, such as local failure.

Prosthetic foot design

Fig. 4 Stress analysis results of the prosthetic foot during the
first step; (a) with a structure relative density of 0.35, (b) with
a structure relative density of 0.55. Yellow lines indicate the
ankle connection part and the red line represents the part
where the load was applied.

FUTURE WORKS

▪ Systematic experiments using 3D printed foot with different 
structure RD will be conducted.

▪ It is expected that optimal RD structure will provide optimal 
energy absorption with more stable deformation for the 
powered transfemoral prosthesis.

▪ It is also expected that optimal RD structure will provide 
better biomechanical properties during the prosthetic 
walking.

Fig. 1 The unit cell and the geometry variables of re-entrant structure.

Fig. 3 The schematics of the boundary conditions applied in
the first step of the FEA and the defined distance for
deformation check.

Table. 2 ABS material properties used for prosthetic foot FEA.

Fig. 5 Displacement distribution of prosthetic foot according to the
step time; (a) RD 0.35, (b) RD 0.55.
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Table. 1 The design parameters with respect to the relative
density of re-entrant structure.

Fig. 2 The prosthetic foot filled with re-entrant structure
modelling for FEA; (a) fixed boundary condition at ankle
connection part; (b) foot with RD 0.35; (c) foot with RD 0.55.
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Energy absorption at heel-strike

▪ To achieve the shock absorbing property at heel strike, we
applied the novel re-entrant structure to the prosthetic
foot.

▪ The prosthetic foot was designed to be manufactured as
a single part using 3D printing technology
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