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• There are approximately 185,000 new amputations each year 

in the United States.

• One out of every five people living with limb loss in the 

United States has a transfemoral amputation (above the knee)

• Transfemoral amputees behave in a less active life style 

compared to people with below the knee amputation.
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Introduction
- Statistics of Amputation in U.S.A
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Fig.1  There are lots of ramps around us

Introduction
- Motivation from the Environment



• Different trajectories needed for different scenarios

ex) flat ground walking, upslope walking, etc.

• The possibility of misdetection existed when the 

prosthesis changes the mode for different scenario

• Additional tuning needed for each users
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Problem Statement
r



• Perform flat ground and upslope walking with a 

transfemoral prosthesis

- Automatically generate walking gaits for different terrain 

- Fast switching algorithms for terrain transitions

- Avoid tuning processes
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Objective
- Desired Characteristics of the Controller



Methods
- Hardware

• AMPRO2 (A&M Prosthesis2)
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Fig. 2  The entire system flow of AMPRO2



Methods
- Human Walking Data for Upslope Walking

• As slope increases → Initial & final phase of angles increases

• The upslope trajectories converge to flat ground walking 

trajectories between 45% and 80% of the gait cycle.
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Fig. 3  Joint angle data from motion capture system for different slopes (0˚,5˚,8˚ and 

10˚) (a) Ankle Joint Angle,  (b) Knee Joint Angle

As slope increases

As slope increases



Methods
- Control Strategies

• Proposed solution

- Use low gain PD control for terrain adaptation

- Use splines to blend upslope trajectory into flat ground trajectory

- Use human-inspired control for flat ground gait generation
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Fig. 4  Transition from flat ground to upslope surface



Methods
- Low Gain PD Control

• Low gain PD control (Blue Region)

- For the unexpected terrain adaptation

• Heel contact (0 and 100 %)

• Spline generation (Red Region)

- Starts to blend into the flat ground trajectory
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Fig. 5  Ankle, Knee joint angle for one gait cycle of abled subject



Methods
- Spline Generation
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• Cubic-splines based convex optimization

- The end point of C1 = The start point of the generated trajectory

- Guaranteed continuity in position

- Guaranteed smoothness in velocity and acceleration

Fig. 6  Two disconnected trajectories C1 and  C2 can be connected 

through a trajectory S.

C1. Upslope trajectory

C2. Flat ground trajectory

S. Generated trajectory



Methods
- Controller Strategy for Flat Ground Walking
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- Human data

- Partial Hybrid Zero Dynamics (PHZD)

- Time parameterization

Human Inspired Optimization

Human-like Walking Trajectory

q = (𝜃sa, 𝜃sk, 𝜃sh, 𝜃nsh, 𝜃nsk, 𝜃nsa)
T

Robot Walking Trajectory



Methods
- Controller Strategy for Flat Ground Walking
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Methods
- Controller Strategy for Flat Ground Walking
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Results
- The Abled Subject Trial
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• Test at the indoor & outdoor environments

- Flat ground & upslope walking with the proposed solution



Results
- The Abled Subject Trial
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Conclusion
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Problem Statement (Revisit)

• Different trajectories needed for different scenarios

• The possibility of misdetection existed when the prosthesis 

changes the mode for different scenario

• Additional tuning needed for each users

Using spline generation and low gain PD control

• Unifying the controller for flat ground & upslope walking

• Fast transition from flat ground to upslope surface

• Eliminating the additional tuning process

• Adapting to the unexpected terrain
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Thank you !
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Q & A

19



Victor Christian Paredes Cauna
pvictorm6@gmail.com

20



Back-up slides
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Methods
- Robotic Model Trajectories Generation
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Fig.8  7-links Robotic Model

• Robotic Model

- Anthropomorphic dimensions of

the human in the robotic model

- Choose a co-ordinates 

q = (𝜃sa, 𝜃sk, 𝜃sh, 𝜃nsh, 𝜃nsk, 𝜃nsa)
T

- Equations of motion 

D(𝜃) ሷ𝜃 + C(𝜃, ሶ𝜃) ሶ𝜃 + G(𝜃) = Bu

( ሶ𝑥 = 𝑓 𝑥 + 𝑔 𝑥 ∗ 𝑢)

(state vector x = (q, ሶ𝑞)T)



Methods
- Human Walking Trajectories Generation
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• Human Model

- Human inspired optimization

𝑦1
𝑑 𝑡, 𝛼 =vhip

𝑦2
𝑑 𝑡, 𝛼 = 𝑒−𝛼1

𝑡(𝛼2cos(𝛼3t) + 𝛼4sin(𝛼3t)) + 𝛼5

- To generate human-like gait

functions for flat ground walking

- Solve the optimization problem   

between gait function & human data
Fig.9  Joint angle of the ankle & knee



Methods
- Human Inspired Control 
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• Hybrid Zero Dynamics (HZD)

Z𝛼 = {(θ, ሶθ) ∶ y1 θ, ሶθ, α = 0, y2 θ, α = 0, Lfy2 θ, α = 0}

- Stay at an exponentially stable periodic orbit

• Partial Hybrid Zero Dynamics (PHZD)

PZ𝛼 = {(θ, ሶθ) ∶ y2 θ, α = 0, Lfy2 θ, α = 0}

𝜟R(SR ∩ PZ𝛼) ⊂ PZ𝛼

- Relax the invariance of the hip velocity under the heel impact

- Obtain parameter 𝛼* satisfy hybrid invariance of PZ𝛼



Methods
- Human Inspired Control
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• Phase Variable

- Eliminate dependence of time (state based)

τ θ = 
𝛿𝑝

ℎ𝑖𝑝
𝜃 −𝛿

+
𝑝
ℎ𝑖𝑝

𝑣
ℎ𝑖𝑝

where, 𝛿𝑝ℎ𝑖𝑝 𝜃 is the linearized hip positon, 𝛿
+
𝑝ℎ𝑖𝑝 the initial 

hip position and 𝑣ℎ𝑖𝑝 the desired hip velocity

• Human Inspired Outputs

y θ, ሶθ, α = 
𝑦1 θ, ሶθ, α

𝑦2 θ, α
= 

𝑦𝑎1 θ, ሶθ − 𝑣ℎ𝑖𝑝
𝑦𝑎2 θ − 𝑦𝑑2 τ θ , α

- Design a controller to drive y θ, ሶθ, α to zero



Methods
- Control Implementation
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• Feedback Linearization

- Applying the feedback linearization control to the human inspired 

outputs, the resulting control law is

ሶ𝑦1
ሷ𝑦2

= 
𝐿𝑓𝑦1 θ, ሶθ

𝐿𝑓
2𝑦2 θ, ሶθ, α

+ 
𝐿𝑔𝑦1 θ, ሶθ

𝐿𝑔𝐿𝑓𝑦2 θ, ሶθ, α
u

u =   
𝐿𝑔𝑦1 θ, ሶθ

𝐿𝑔𝐿𝑓𝑦2 θ, ሶθ, α
( -

𝐿𝑓𝑦1 θ, ሶθ

𝐿𝑓
2𝑦2 θ, ሶθ, α

+ v )

ሶ𝑦1
ሷ𝑦2

= v

-1



• Find more stable and robust phase variable

• Consider the walking with foot rolling motion which makes 

more human-like

• Extend to the downslope walking

• Design a new version of lower limb prosthesis with springs

Future Works
- Lower Limb Prosthesis
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