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Abstract— Powered transfemoral prostheses are robotic sys-
tems that aim to restore the mobility of transfemoral amputees
by mimicking the functionalities of healthy human legs. The
advantage of using a powered prosthetic device is the enhanced
performance on various terrains. One of the most frequent
terrain found during daily locomotion (other than flat ground)
is the surface with slope. In this work, we introduce a
framework to generate upslope walking gaits automatically
utilizing an online algorithmic formulation. This approach is
inspired from analyzing human gait characteristics during
upslope walking. In particularly, it is found that the ankle and
knee trajectories of upslope walking share a similar pattern
with flat ground walking during the middle section (from
20% to 80%) of one step. This observation motivates us to
propose an approach of blending the first portion of nominal
flat ground gaits with a set of cubic splines to achieve upslope
gaits. Importantly, parameters of these cubic splines are solved
using an online optimization, which gives the users ability
to traverse in different terrains without using any intention
detection algorithm. For the last portion of a step, an impedance
controller with low gains is considered upon the contact of
prosthetic legs to the ground, which allows the users to step
onto unknown terrains. The proposed framework is validated
on a custom transfemoral prosthesis AMPRO II with showing
automatic motion switches between flat ground and upslope
walking.

I. INTRODUCTION

It is estimated that there are approximately 185,000 new
amputation each year in the United States [1]. According
to the National Center for Health Statistics [2], among the
total 1.2 million people in the United States living with
limb losses, 18.5% are transfemoral amputees. Amputation
affects the mobility of impaired subjects and limits their
activities of daily living. The use of prosthetic devices is
aimed at restoring the walking capabilities of amputees by
mimicking the behavior of a normal gait. In particular, there
are certain requirements that must be met for prostheses. For
instance, prostheses must support the human body weight,
reduce the metabolic energy consumption and be able to
take cues from the users. Based on whether a prosthesis
can provide net power during walking or not, there are
two main types of prostheses: i) energetic passive devices
and ii) powered devices. Despite the apparent advantages of
powered prostheses (being able to provide net power), most
of the market is centered on passive devices. An important
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drawback of passive devices is the lack of adaptability to
different terrains, such as upslope and upstairs. Since most
environments include both flat and sloped surfaces, user-
oriented transfemoral prostheses should be able to produce
walking gaits in those terrains flawlessly. However, most of
the powered transfemoral prostheses have been focused only
on flat ground walking [3], [4], [5]. With the purpose of
exploring solutions for traversing sloped surfaces, we take
our first steps to propose a framework for automatically
generating upslope walking gaits with online optimization.

While powered flat ground prosthetic walking has been
studied vigorously, only limited research for upslope walking
can be found. Sup et al. [6] proposed a motion transition
method with a transfemoral prosthesis that has demonstrated
successful walkings for different terrains. This work pro-
posed to tune impedance parameters for different phases and
slope inclinations. Based on the estimated inclination angle,
the impedance parameters with the best matching inclination
angle in the database were chosen. However, because the
dataset can only cover a limited set of possible inclination
angles, this method is useful only for a few inclinations.
Atakan et al. [7], [8] proposed a mode intent recognition to
discriminate between standing, walking and sitting. Lawson
et al. [9] provided stair ascending and descending within
the same impedance framework. Even though these modes
have been reported to be successful, user intent must be
identified to switch between different modes. This requires
some dramatic and/or unnatural leg movements and tends
to introduce a delay on the walking activity. Additionally,
misclassification might happen with these methods.

Electromyography (EMG) based methods have been im-
plemented in the transfemoral prosthesis with the goal of
achieving more natural actuation and motion transition [10].
EMG signals were mapped and classified to control each of
the actuators. However, even with the successful implementa-
tion, EMG-based methods could suffer from misclassification
issues. Copying kinematic data from one leg to another [11]
could not compensate for the differences in terrain if the
legs are in different terrains. Also, basic gait descriptors [12]
may have problems to adapt to every slope presented. To
avoid problems of parameter tuning and misclassification for
intent recognition, we start from the human-inspired walking
approach and move forward to an adaptive formulation.

The human-inspired walking approach has potentials to
automatically generate stable and human-like walking gaits
for transfemoral prosthesis. Ames et al. proposed to use
human data in generating gait patterns originally for bipedal
robots [13], [14]. Zhao et al. [3] adapted the human-inspired

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3762-9/16/$31.00 ©2016 IEEE 3204



control method into the powered transfemoral prosthesis,
where he showed stable and human-like prosthetic walking
through experiments. The advantage of this framework is i)
the avoidance of parameter tuning, and ii) the generation of
a provably stable walking gait.

The human-inspired walking approach was also used for
the generation of walking gaits to perform stair ascending
[15]. The proposed method consisted in formulating human-
inspired optimization with the stairs profile, which provides
a provably stable walking gait. However, two drawbacks
in this method must be mentioned: i) the human-inspired
optimization needs to be executed offline, and ii) the a priori
knowledge of the stairs profile (or any surface in general)
might not be available in practical applications. In general,
surface inclination is unknown in advance and can only be
estimated upon contact with the surface. Furthermore, the
human-inspired optimization cannot be solved online, which
makes the framework impractical in reality.

The objective of this paper is the generation of upslope
walking gaits for a continuous range of surface inclinations in
real time in the transfemoral prosthesis AMPRO II developed
by AMBER Lab [16]. To achieve this objective, we analyze
human data and extract the basic strategies that humans use
to generate seamless transition from flat ground walking
to upslope walking. Cubic splines are generated through
closed-form optimization that connect flat ground walking
trajectories with upslope walking trajectories, creating a
smooth transition that allows adaptability to diverse surface
inclinations.

The idea behind the optimization is the possibility to
generate a trajectory for different initial conditions that can
be shaped by an appropriate selection of the cost function.
Since we are dealing with human subjects we need a real
time algorithm thus we formulate the optimization as a
convex problem. We additionally introduce a low gain PD
controller, used before impact with the ground, on the ankle
and knee to have adaptability of the walking gait in various
unknown terrains.

II. CONTROLLER CONSTRUCTION

The controller is constructed from the qualitative observa-
tion of ankle and knee trajectories from the human data. The
idea is to blend the nominal trajectories for the flat ground
with the trajectories for the upslope walking. A set of cubic
splines is proposed for this purpose. Additionally, a low gain
PD controller is employed to adaptively step on unknown
surfaces upon contact in the later phase of gait cycle.

A. Human strategies for upslope walking

Human data from [17] are analyzed to capture ankle and
knee trajectories during flat ground walking and upslope
walking with slope inclinations of 5◦, 8◦ and 10◦ (Fig. 1).
Careful observation of the data can warrant a trend in the
trajectories of ankle and knee as the slope increases (Fig.
1). As the slope increases, the initial and final phases of the
trajectories increase in amplitude (Fig. 1). Please note that
the trajectories converge to flat ground walking trajectories

between approximately 45% to 80% of the gait cycle. Similar
trends can also be found in the human-inspired simulation
for upslope walking [18], particularly in the increase on knee
flexion during the beginning and the end of the gait cycle.
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Fig. 1. Kinematic data showing the effect of the slope of an inclined
surface. Data digitized from [17]

B. Prosthesis strategies

In order to qualitatively obtain similar strategies as human
data exhibits, we apply two algorithms in different phases of
the step progression. During the stance (i.e., early) phase
of the prosthetic gait cycle, a region is selected from the
beginning of the step to a point where the upslope and
flat ground trajectories are converging (Fig. 1), from this
point the algorithm blend the trajectories such that for any
new initial condition a new trajectory is generated that
converges to the flat ground walking trajectories. For swing
(i.e., late) phase, a region is chosen in the last part of the
step progression, from a point where the flat ground and
upslope trajectories are starting to diverge to the final part
of the step. In this region a low gain PD control is applied
with the objective to allow the trajectories to adaptively be
blended with the unknown surface. These regions are shown
in Fig. 2. The low gain PD allows the prosthetic joints to
accommodate unknown changes in surface.

The general action of the strategies expected on the pros-
thesis consists of i) active joint accommodation at the surface
due to the low gain PD control, and ii) the qualitatively
similar evolution of the joints trajectories during upslope
walking with respect to the human strategies via splines
generation. It is assumed that human is inherently robust and
able to reject small perturbation due to trajectory blending.

The objective of this framework is to obtain the same
qualitative behaviors for the ankle and knee. Note that these
behaviors are expected to be replicated especially by the
knee. Due to the imposition of flat foot walking, the ankle
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Fig. 2. Regions of action of the splines (white region) and the low gain
PD control (shaded region).

Fig. 3. Blending trajectory C1 to reach trajectory C2.

trajectories will evolve somewhat differently than the human
ankle trajectories. A multi-contact algorithm would improve
this. Online generation of a set of trajectories can overcome
a range of different surfaces in real time. To our best
knowledge, it is the first online optimization-based trajectory
generation on prosthetic devices.

C. Cubic-splines based convex optimization

To generate the trajectories that blend the flat ground
human trajectories in real time, we use a convex optimization
formulation. Also, smoothness of the trajectory plays a key
role in the performance since nonsmooth trajectories can
cause large velocities or accelerations. However, smoothness
condition entails more requirements in generating the tra-
jectories. That is, the end point in the initial path C1 must
be the starting point of the generated trajectory (see dashed
line in Fig. 3) and the end point on the desired path C2,
the nominal flat ground trajectory, must also be designed as
an smooth connection guaranteeing smoothness in position,
velocity and acceleration. The generated smooth trajectory S
is expected to behave as shown in Fig. 3.

We are interested in formulating a set of N cubic splines
rather than a single cubic spline since using a single cubic
spline does not have enough freedom for better blending
of two trajectories. The first conditions for smoothness are

addressed by imposing continuity in the extreme points.

S(ts) = P1 (1)
S(tc) = P2 (2)

Ṡ(ts) = dP1 (3)

Ṡ(tc) = dP2 (4)

S̈(ts) = d2P1 (5)

S̈(tc) = d2P2 (6)

where d represents a derivative operator. It is also necessary
to ensure the smoothness along the generated path by impos-
ing the previous constraints along all the waypoints S(t(i)).
Let S1 and S2 be the two consecutive splines, connected at
a waypoint t(i). Then the conditions of smoothness can be
written as:

S1(T (i)) = S2(T (i)) (7)

Ṡ1(T (i)) = Ṡ2(T (i)) (8)

S̈1(T (i)) = S̈2(T (i)) (9)

To generate a trajectory that approaches the reference path
C2, it is necessary to have a cost function based on the
distance between the splines trajectory and C2. Fig. 3 shows
the distance between each waypoint to the desired trajectory.
These distances will be used to construct the cost function
for the following least square formulation:

min∑
i
||S(T (i))−C2(T (i))|| (10)

st (1)− (9) (11)

Each cubic spline has the following form:

Si = ai
0 +ai

1(t− tc)+ai
2(t− tc)2 +ai

3(t− tc)3 (12)

Which, after derivations yields:

Ṡi = ai
1 +2ai

2(t− tc)+3ai
3(t− tc)2 (13)

S̈i = 2ai
2 +6ai

3(t− tc) (14)

Note that the splines Si and Si+1 are continuous and
smooth in terms of position, velocity and acceleration. For
position, the following condition needs to be satisfied:

Si(ti) = ai
0 +ai

1(∆ti)+ai
2(∆ti)

2 +ai
3(∆ti)

3 (15)

Si+1(ti) = ai+1
0 +ai+1

1 (∆ti)+ai+1
2 (∆ti)

2 +ai+1
3 (∆ti)

3 (16)
Si(ti)−Si+1(ti) = 0 (17)

Repeating the same procedure for velocity, the following
is obtained:

Ṡi(ti) = ai
1 +2ai

2(∆ti)+3ai
3(∆ti)

2 (18)

Ṡi+1(ti) = ai+1
1 +2ai+1

2 (∆ti)+3ai+1
3 (∆ti)

2 (19)

Ṡi(ti)− Ṡi+1(ti) = 0 (20)

Finally, considering acceleration, the following conditions
needs to be satisfied:

S̈i(ti) = 2ai
2 +6ai

3(∆ti) (21)

S̈i+1(ti) = 2ai+1
2 +6ai+1

3 (∆ti) (22)

S̈i(ti)− S̈i+1(ti) = 0 (23)
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These constraints can be written in a matrix form. Con-
sidering λ a vector storing all the parameters of the splines,
a segment λi,i+1 is constructed in the following way:

λi,i+1 =
[
ai

0 ai
1 ai

2 ai
3 ai+1

0 ai+1
1 ai+1

2 ai+1
3

]T
(24)

Then, the constraints can be written as follows:[
1 ∆ti ∆2

ti ∆3
ti −1 −∆ti −∆2

ti −∆3
ti

]
λi,i+1 = 0

(25)[
0 1 2∆ti 3∆2

ti 0 −1 −2∆ti −3∆2
ti

]
λi,i+1 = 0

(26)[
0 0 2 6∆ti 0 0 −2 −6∆ti

]
λi,i+1 = 0

(27)

With the boundary conditions for the initial point, we have:[
1 ∆t0 ∆2

t0 ∆3
t0 0 0 0 0

]
λ0,1 = P1 (28)[

0 1 2∆t0 3∆2
t0 0 0 0 0

]
λ0,1 = dP1 (29)[

0 0 2 6∆t0 0 0 0 0
]

λ0,1 = d2P1 (30)

Analogous formulation for the other extreme point can be
obtained for P2,dP2,d2P2. All the constraints can be written
in a single matrix, which is represented by the constraint
matrix C.

Cλ = D (31)

where, D is the value that the equation must take in
order to meet the constraint conditions, which can be
P1,dP1,d2P1,P2,dP2,d2P2 or zero depending on the way-
point and the condition being enforced.

In order to express the cost function, it is possible to obtain
the value of each spline at its respective waypoint using the
following equation:

Si(ti) =
[
1 ∆ti ∆2

ti ∆3
ti

]
λi,i+1 = Piλi,i+1 (32)

Then, all values at the waypoints are calculated in a vector
using the following equation:

S = Pλ (33)

Finally, the minimization problem can be formulated as:

min||Pλ −Y ||s.t Cλ = D (34)

where, Y is the desired set of points to which we want to
converge to.

D. Analytical solution of optimization problem

It is possible to solve the optimization using an analytical
form ready to be solved by most linear algebra C++ pack-
ages. Considering the problem expressed in the optimization,
it is possible to rewrite the optimization problem as:

min||Pλ −Y ||= min λ
T PT Pλ −2Y T Pλ +Y TY (35)

s.t. Cλ = D (36)

The Lagrangian is:

L = λ
T PT Pλ −2Y T Pλ +Y TY +ν

T (Cλ −D) (37)

Then, the KKT conditions for optimality are:

2PT Pλ −2PTY +CT
ν = 0 (38)

Cλ = D (39)

The matricial form for the solution is written as:(
2PT P CT

C 0

)(
λ

ν

)
=

(
2PTY

D

)
(40)(

λ

ν

)
=

(
2PT P CT

C 0

)−1(2PTY
D

)
(41)

If C matrix is full-rank, then the matrix will be invertible.
However, the matrix can become ill-posed. To avoid problem
of ill-posedness, a regularization technique is used. The im-
portance of the closed form formulation is i) the existence of
a solution and ii) real time computation. Note that choosing a
large number of splines may increase the optimization time,
however, a small number of splines (4 splines) are used.

E. Splines simulation

The spline generation was tested in MATLAB. As shown
in Fig. 4, the formulation of splines can generate a smooth
trajectory that converges from any initial condition to the flat
ground walking trajectories for both ankle and knee. The
generated trajectories match the desired qualitative human
walking trajectories.
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Fig. 4. Ankle and knee trajectories for flat ground walking and with
imposed conditions for spline testing.

III. FLAT TERRAIN GAIT GENERATION

The goal of this section is to introduce the framework of
generating a stable flat ground prosthetic walking gait that
can be used as a reference to blend trajectories and generate
upslope walking gaits. Firstly, a IMU based motion capture
system is introduced to record healthy human data, which
will be used as a reference point for human-like prosthetic
gait design. In the context of human-inspired optimization
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Fig. 5. Robotic model inspired on the human subject.

[13], a bipedal robot system is considered for the human-
prosthesis model. Based on this model, the human-inspired
optimization problem is implemented to generate a stable
prosthetic gait that can also be implemented on the device
directly.

A. Motion capture

During the data recording procedure, an External Kalman
Filter (EKF) is utilized to estimate the ankle and knee
trajectories, which will be used as a reference for prosthetic
gait design. In order to generate a stable walking gait for
a prosthetic device using the human-inspired approach, we
follow the procedure followed in AMPRO I [3]. An IMU
based inertial motion capture system is used to record the
joint trajectories of a healthy subject with similar anthropo-
morphic dimensions with respect to the prosthesis user (that
could be an amputee). The IMU data is processed using an
External Kalman Filter (EKF) to determine the estimated
trajectories of the ankle and knee needed for the human-
inspired optimization.

B. Prosthetic model construction

1) Robotic Model: We model the human-prosthetic walk-
ing as a 7-link (one torso, two thighs, two calves and two
feet) bipedal robotic system which shares similar anthropo-
morphic values as the prosthesis user. The coordinates are
defined as θ = (θsa,θsk,θsh,θnsh,θnsk,θnsa)

T ∈ QR as in Fig.
5. Using the Euler-Lagrange, the dynamics can be expressed:

D(θ)θ̈ +C(θ , θ̇)θ̇ +G(θ) = Bu (42)

where, D(θ) ∈ R6x6 is the inertial matrix, C(θ , θ̇) is the
coriolis matrix, G(θ) is the gravity vector and B = I6 is the
torque map. By defining the state vector x = (θ , θ̇)T it is
possible to formulate (42) as an affine control system with
the following equations:

ẋ = f (x)+g(x)u (43)

Considering the existence of impacts when the swing leg
hits the ground, the system is naturally modeled as a hybrid
system. Perfect plastic impact model (i.e, there is no rebound,
slipping or deformation during the impact [19]) is adopted

to model the impact dynamics in this work. A detailed
description of hybrid systems applied to bipedal robots can
be referred to [13], [20], [21].

2) Human-Inspired Outputs: To represent human loco-
motion from a control perspective, a set of outputs—joint
angles or functions of joint angles—is utilized to charac-
terize human walking kinematically. Therefore, the goal of
achieving human-like walking becomes to drive the actual
robot outputs ya(θ) to the desired human outputs yd(t,α),
which is represented by a set of canonical walking functions
(CWF) with parameter α [13]. Note that, with the analysis
of human locomotion data, it is found that the forward hip
position ρ(θ) progresses linearly during a step cycle [14]. In
light of this observation, we use ρ(θ) as a phase variable to
remove time dependency of the tracking functions, making
the tracking system autonomous. In particular, we define the
following parameterized virtual constraints as:

y(θ , θ̇ ,α) =

[
y1(θ , θ̇ ,α)

y2(θ ,α)

]
=

[
ya

1(θ , θ̇)− vhip
ya

2(θ)− yd
2(ρ(θ),α)

]
(44)

where, y1(θ , θ̇ ,α) is the relative degree one output corre-
sponding to the difference between the actual hip velocity
ya

1(θ , θ̇) and the desired hip velocity vhip. y2(θ ,α) are
the relative degree two virtual constraints which are the
difference between the actual ya

2(θ) outputs and the desired
yd

2(ρ(θ),α) outputs. Note that, in order to achieve stable
tracking for the hybrid system, the controller parameters
α will be obtained from a human-inspired optimization
problem that will be discussed in the following section.
Partial Hybrid Zero Dynamics. A regular feedback lin-
earization controller that yields y(θ , θ̇ ,α)→ 0 for contin-
uous dynamics can not guarantee stable bipedal walking
considering the embedded hybrid property (i.e., impacts) of
such systems. This motivates the introduction of the partial
hybrid zero dynamics (PHZD) constraints aiming to yield a
parameter set α that ensures the tracking of relative degree
two outputs remain invariant through impacts. In particular,
we define the PHZD surface as:

PZα = {(θ , θ̇) ∈ T QR : y2(θ ,α) = 0,L f y2(θ ,α) = 0} (45)

This surface is impact invariant if the following PHZD
constraint holds:

∆R(SR∩PZα)⊂ PZα (46)

where ∆R and SR are the reset map and the switching
surface corresponding to the model. A detailed mathematical
construction of these two terms can be found in [13], [14].

3) Human-Inspired Optimization: A human-inspired opti-
mization problem is implemented here to generate a human-
like stable gait for flat-ground walking. The human locomo-
tion data collected by the IMU system is used as the refer-
ence trajectory for the optimization problem. In particular,
we define the objective cost function as the weighted square
sum of the differences between the actual human data and
the desired tracking function, which guarantees the generated
gait is as close to the healthy human trajectory as possible.
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Additionally, the PHZD constraint (46) along with several
physical constraints (such as torque, position and velocity
limits imposed by the device) are considered explicitly for
this optimization problem. Therefore, the human-inspired
optimization can be formulated as:

α = argmin
α∈R26

CostHD(α) (HIO)

s.t.(PHZD)

(Physical Limitations)

The end result of this optimization is a mathematically stable
gait which can also be implemented onto the physical device
directly. The corresponding ankle and knee trajectories of the
generated gait are shown in Fig. 4.

C. Outputs for upslope walking using splines

In order to introduce the generated splines into the CWF,
it is important to consider the designed convergence time
tc = ρ∗. For each ρ(θ) less than ρ∗ the splines trajectory
will be used instead of the nominal CWF. The values of the
splines can be calculated as:

S(ρ(θ)) =
[
1 ρ(θ) ρ(θ)2 ρ(θ)3

]
λi(ρ(θ)) (47)

where, λi(ρ(θ)) is the set of spline parameters corresponding
to ρ(θ). The relative degree two output will depend on ρ(θ)
since it can be based on the spline trajectory or the CWF and
is therefore defined as:

y2(θ ,α) =

{
ya

2(θ)−S(ρ(θ)), i f ρ(θ)≤ ρ∗

ya
2(θ)− yd

2(ρ(θ),α), i f ρ(θ)>ρ∗
(48)

Once the outputs are defined, a feedback controller can be
used to drive the outputs to zero. Note that the splines may
live outside the PHZD surface, this violation of the originally
designed PHZD surface (for flat ground) is assumed to be
handled by the human subject for the period of time where
ρ(θ)< ρ∗.

D. Control Implementation

With the desired joint values for position and velocity
being calculated from the PHZD reconstruction [22], a PD
controller is utilzied to drive the prosthetic joints, which can
be given by:

τi = ki
p(θ

i
d−θ

i
a)+ ki

d(θ̇
i
d− θ̇ i

a), i ∈ {ankle,knee} (49)

During the last portion of prosthetic swing phase, (Fig. 2)
the PD gains are decreased to create an effect of a low-
impedance behavior, which allows the unkwown terrain to
determine the final joint position of the prosthesis.

IV. EXPERIMENT IMPLEMENTATION

A. AMPRO II

The proposed framework was implemented on a powered
transfemoral prosthesis AMPRO II, which is the second
version of the AMPRO prosthesis series that are custom
designed by AMBER Lab [16] leaded by Dr. Aaron Ames
at Texas A&M University (now at Georgia Tech) and

Fig. 6. Low gain PD representation of the action on a sloped surface.

maintained and operated by HUR Group at Texas A&M
University for controller design. Compared to AMPRO I [3],
the main improvements of AMPRO II are three folds: a) the
weight is reduced to 5kg, which is more than 3kg weight
reduction; b) the height is reduced by 71mm and the width is
reduced by 36mm. The smaller size will allow a wider height
range of subjects to be able to use this device; c) the motors
and electronics are placed higher up on the calf resulting a
higher center of mass position, which yields a much smaller
inertial for the device. Additionally, two FlexiForce force
sensors are mounted on the heel and toe for contact detection
and leg switch. The main code structure including the online
gait generation code is running on a low-power single core
micro computer BeagleBone Black at 200Hz. Details of the
design diagram can be seen in Fig. 7.

Fig. 7. AMPRO II prosthetic device developed by the AMBER Lab leaded
by Dr. Ames. Each component is shown in one of the three views of the
prosthesis.

B. Human-Robotic Interfacing

As discussed in Section III, the forward hip position ρ(θ)
is utilized as the phase variable to parameterize one step. In
this manner, the desired trajectories for the prosthetic joints
can be determined based on the current hip position which is
measured based on the stance leg [3]. During the prosthetic
stance phase, the ρ(θ) can be calculated utilizing the encoder
readings. In order to provide a sensor feedback during human
stance phase, i.e., to calculate the phase variable during the
human stance phase, two IMUs are mounted on the shin and
thigh of the human leg. The end result is that the prosthetic
leg could sync with the human leg movement based on the
calculation of hip position utilizing the IMUs readings.
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C. Experimental Results

During the experiment, the prosthesis user was requested
to walk indoors from flat ground to upslope as shown in Fig.
10. The walking surface of the testing consists a 13 f t flat
walkway leading directly to a 7 f t 13◦ slope surface. The
resulting ankle and knee trajectories of both flat ground and
upslope walking are shown in a comparative way in Fig.
8, from which we can see that the strategies observed in
human walkers are replicated qualitatively in the prosthesis
knee joint. The differences in ankle trajectories with respect
to normal human walking are originated because of the im-
position of flat foot walking, instead of a more natural multi-
contact walking algorithm (heel strike, toe push) [23], [24],
[25]. Note that during flat ground walking, the framework
yielded a stable prosthetic walking for the user as suggested
by Fig. 10. Furthermore, from this figure we can see that the
transition from flat ground to upslope is done in real time
without any delay or switching procedure.
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Fig. 8. Ankle and Knee (from top to bottom) trajectories for flat ground
and upslope walking

The tracking results of both the ankle and knee trajectories
during two walking steps are shown in Fig. 9. In 9, the
duration of action of the low gain PD and the spline blending
are presented by red and blue regions, respectively. It can
be observed that the action of the low gain PD control
allows actual joints position to diverge from its desired values
which, therefore, give the user ability for terrain adaptation
(see red region). Also, during the action of the splines, the
actual values of the joint positions are taken as an initial
point to generate a trajectory via the splines formulation
that converges to the nominal flat ground trajectories and
shows qualitatively similar behavior that the upslope human
trajectories (see blue region). Also, an outdoor experiment
was realized with AMPRO II, resulting in stable walking for
flat ground and upslope surfaces as shown in in Fig. 11.

Fig. 9. Ankle and Knee trajectories for upslope walking, the red region
indicates the area of action of the low PD gain, and the blue are the splines
generation

V. CONCLUSIONS

The proposed framework for upslope walking allows the
prosthesis user to traverse unknown sloped surfaces. Given
any unknown surface inclination, the proposed algorithm
generates a specific set of trajectories for every condition
that is imposed by the surface. In particular, this framework
did not require any tuning processes for the determination of
controller gains during upslope walking. Additionally, only
one-time human-inspired optimization for the flat ground (for
reference trajectory) was needed to be conducted offline. Due
to these benefits, this framework can be utilized in other
devices with real time solutions. The splines generated satisfy
smoothness conditions that are key for its implementation,
a small number of splines (4 splines) were chosen because
a large number of them would unnecessarily increase the
computation time. The splines are defined by the time
designed to converge (tc), since the initial time is assummed
at the beginning of the step (ts = 0).

Due to the flat-foot walking assumption, the prosthetic
trajectories are different with the healthy human trajectories,
specially in the ankle. This situation can be improved by
implementing a more natural multi-contact gait [23] that
considers heel-strike and toe-push.
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