RO-MAN2017

Pestana Palace Hotel, Lisbon, Portugal August 28 to September 1, 2017

26th IEEE International Symposium on Robot and Human Interactive Communication

HUMAN REHABILITAION GROUP Texas A&M University

Interactive Balance Rehabilitation Tool with Wearable Skin Stretch Device

Yi-Tsen Pan, and Pilwon Hur Dept. of Mechanical Engineering | Texas A&M University Aug. 29th 2017 | Lisbon, Portugal

- Background & Introduction
 - Balance Rehabilitation program
 - Wearable haptics
- Wearable Skin Stretch System
 - Wrist-worn Device Design
 - Control Algorithm
- Experiments
 - Protocol
 - Interactive Program
 - Results
- Conclusion & Future Works

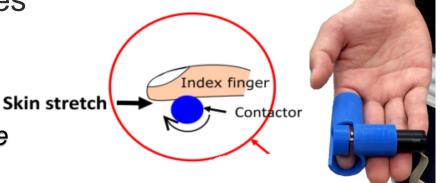
- Background & Introduction
 - Balance Rehabilitation program
 - Wearable haptics
- o Wearable Skin Stretch System
 - Wrist-worn Device Design
 - Control Algorithm
- o Experiments
 - Protocol
 - Interactive Program
 - Results
- o Conclusion & Future Works


Background

- A good physical balance training program should be
 - Thorough and effective
 - Entertaining
- Game-based approach has been introduced in balance training programs for the past few years
 - Nintendo Wii Fit balance board
 - Virtual Reality
 - \rightarrow Wearable haptics

Augmented haptic feedback

• Wearable "actuator"

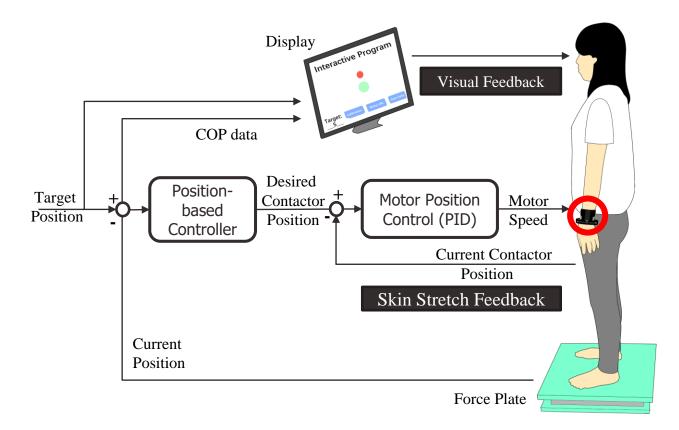

Augmented haptic feedback

- Wearable "actuator"
- Light touch at fingertip improves standing balance [1]

We propose a *wrist-worn haptic device* that can deliver directional cues in response to individual's postural sway

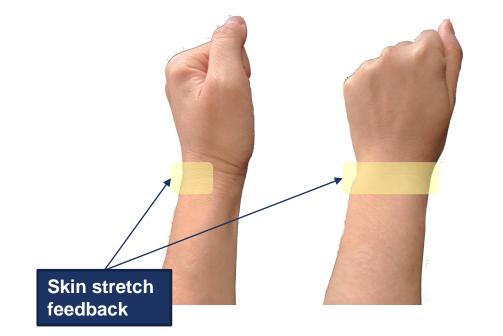
[1] Y. T. Pan, H. U. Yoon, and P. Hur, "A Portable Sensory Augmentation Device for Balance Rehabilitation Using Fingertip Skin Stretch Feedback," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 1, pp28-36, 2017

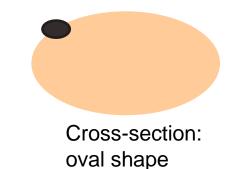
Objective: to determine the feasibility of the proposed system in improving dynamic stability for healthy subjects

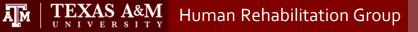


- Background & Introduction
 - Balance Rehabilitation program
 - Wearable haptics

Wearable Skin Stretch System

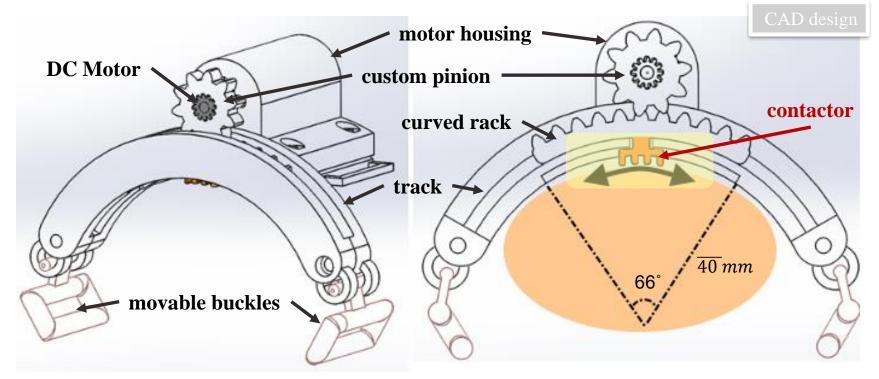

- Wrist-worn Device Design
- Control Algorithm
- o Experiments
 - Protocol
 - Interactive Program
 - Results
- o Conclusion & Future Works


System Overview



Human Wrist

• A natural anatomical anchor point



Wrist-worn Device Design

Rack and pinion mechanism

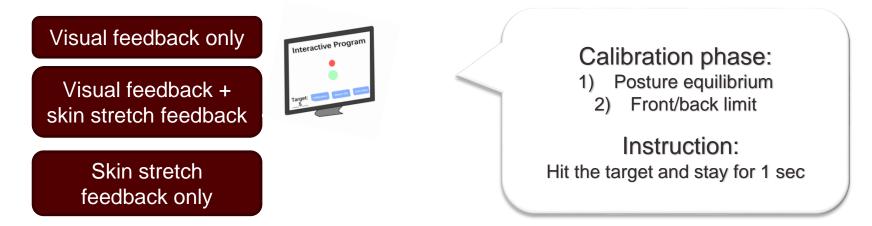
Wrist-worn Device Design

Control Algorithm

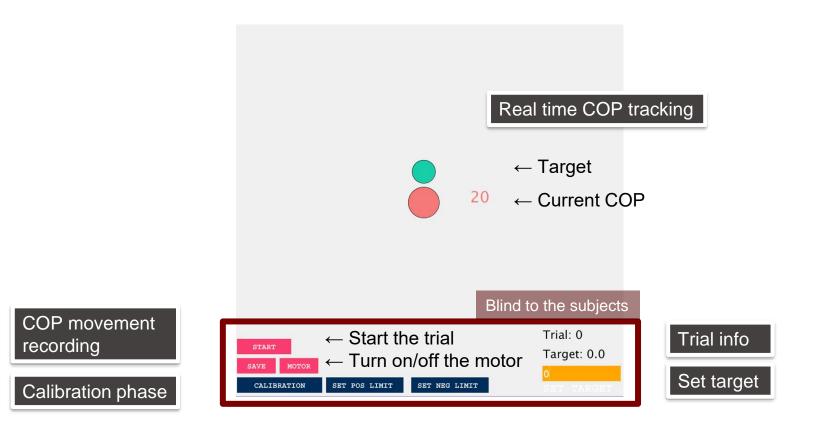
$$\begin{array}{l} \theta_{\rm C} = \theta_{\rm L} \cdot \chi_{\rm COP} \, / \, \chi_{\rm FL}, \mbox{ if } \chi_{\rm COP} \geq 0 \\ \theta_{\rm C} = \theta_{\rm L} \cdot \, \chi_{\rm COP} \, / \, \chi_{\rm BL}, \mbox{ if } \chi_{\rm COP} < 0 \end{array}$$

 $\begin{array}{l} \theta_{C} : \mbox{ contactor location} \\ \theta_{L} : \mbox{ limit of the pinion angle, } 150^{\circ} \\ \chi_{COP} : \mbox{ current COP} \\ \chi_{FL/BL} : \mbox{ absolute value of COP limits at front/back} \end{array}$

Control Algorithm


$$\begin{array}{l} \theta_{\rm C} = \theta_{\rm L} \cdot \Delta \chi \, / \, \chi_{\rm FL}, \mbox{ if } \chi_{\rm COP} \geq 0 \\ \theta_{\rm C} = \theta_{\rm L} \cdot \Delta \chi \, / \, \chi_{\rm BL}, \mbox{ if } \chi_{\rm COP} < 0 \end{array}$$

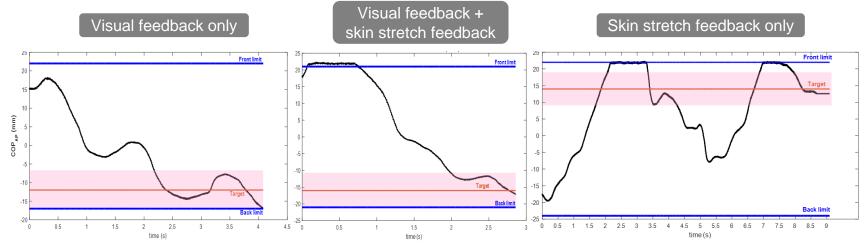
 $\Delta \chi$: $x_{COP} - x_T$ and x_T is the pre-defined target position θ_C : contactor location θ_L : limit of the pinion angle, 150° χ_{COP} : current COP $\chi_{FL/BL}$: absolute value of COP limits at front/back


- Background & Introduction
 - Balance Rehabilitation program
 - Wearable haptics
- Wearable Skin Stretch System
 - Wrist-worn Device Design
 - Control Algorithm
- Experiments
 - Protocol
 - Interactive Program
 - Results
- o Conclusion & Future Works

Experimental Protocol

- 5 healthy young subjects (age \pm s.d.: 25.2 \pm 2.9, 2 females)
- Weight shifting tasks in sagittal plane

Interactive Program


Experimental Protocol

- 5 healthy young subjects (age \pm s.d.: 25.2 \pm 2.9, 2 females)
- Weight shifting tasks in sagittal plane

- Total 6 tasks
- Trial fails if reaching time > 3 mins

Results

▲ COP_{AP} trajectories from subject No. 2

	V	V+S	S *
Time to target (s)	5.94 ± 0.34	5.38 ± 0.65	11.45 ± 2.62**
Speed (mm/s)	61.07 ± 22.34	63.13 ± 19.77	62.82 ± 18.88

*one trial failed; ** p<0.05

- Background & Introduction
 - Balance Rehabilitation program
 - Wearable haptics
- Wearable Skin Stretch System
 - Wrist-worn Device Design
 - Control Algorithm
- Experiments
 - Protocol
 - Interactive Program
 - Results

Conclusion & Future Works

Conclusion

- Interactive framework for balance rehabilitation incorporating both visual and skin stretch feedbacks was developed
- All subjects could easily map their positions with the directional cues provided by the wrist-worn skin stretch device
- Additional tactile feedback might help regulate postural stability, though no significant difference was found between V and V+S tasks
- All subjects could complete the motor tasks using the skin stretch cues only
- Potential use for the long-term rehabilitation program

Future Works

- Wearable wrist device design improvement
 - Easy to wear, accommodate difference shapes of human wrist
 - Better localization of the contactor
- Include complex postural control tasks
- Increase sample size and recruit wider age groups and people with neurological impairment

Q&A

- You can reach me at
 - Myitsenpan@tamu.edu
 - in Yi-Tsen Pan
 - www.hurgroup.net (Lab)