Effect of Sensory Augmentation via Skin Stretch Feedback on Quiet Standing Balance

Yitsen Pan, Yoo-Seok Kim and Pilwon Hur

39th Annual Meeting of The American Society of Biomechanics

August 8th , 2015 | Hyatt Regency | Columbus, Ohio

HUman Rehabilitation Group

Outline

- Introduction
- Device Design
- Control Strategy
- Methods
 - Experimental Protocol
 - Postural sway measures
- Results
- Discussion
- Conclusions
- Q&A

Introduction

- Human bipedal upright stance is achieved primarily by visual, vestibular, and proprioceptive sensory systems [1].
- Dysfunctional sensory systems cause postural sway and increase the risk of falling, which threatens quality of daily life [2].

Schematic diagram of human

postural sway.

Center of Mass (COM, yellow dot), Center of Pressure (COP, red dot).

[1] R. J. Peterka, "Sensorimotor integration in human postural control," J. Neurophysiol., vol. 88, no. 3, pp. 1097–1118, 2002.

[2] F. B. Horak, "Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls?," *Age Ageing*, vol. 35, pp. ii7–ii11, Sep. 2006.

Introduction

 Light touch (contact force < 1 N) of fingers on fixed surfaces can reduce postural sway during quiet standing and walking [3]. Converted into proper

information by the human

Biofeedback

- Easily recognized.
- compensate for weak or missing sensory information

Additional sensory information from biofeedback

Introduction

- Objectives:
 - Development of a portable sensory augmentation system that can induce skin stretch feedback at fingertip pad.
 - Examine the efficacy of the developed device on quiet standing balance of healthy young adults for various sensory modalities.
- Hypothesis:
 - Augmented sensation via the induced skin stretch feedback enhances quiet standing balance more effectively when more sensory modalities are removed.

Device Design

- Our designed portable sensory augmentation system consists of
 - Sensory augmentation device (SAD).
 - Embedded control unit (myRIO, National Instruments).
 - A motor driver.
 - Inertia measurement unit (IMU).

Control Strategy for Postural Sway

Methods

- Experimental Protocol
 - 30s quiet standing balance tests under <u>six</u> conditions were performed among 15 healthy young subjects.

Methods

- Postural Sway Measures
 - Center of Pressure (COP) data were collected using a force plate and a data acquisition system, sampled at 1 kHz.
 - Multiple traditional COP-based measures were exanimated in both Anterior-Posterior (AP) and Medio-Lateral (ML).
 - Range
 - Mean Velocity (*MV*)
 - Mean Frequency (*MF*)
 - Centroidal Frequency (CF)

Range are

Greater when EO and EC with SAD.

Smaller when HBEC with SAD.

10

Mean Velocity are

□Without significant change or greater when EO and EC with SAD.
□Smaller when HBEC with SAD.

11

MF are

□ All smaller when EO, EC and HBEC with SAD.

CF are

□All smaller when EO, EC and HBEC with SAD.

13

Discussion

- Availability of sensory systems affects balance during quiet standing.
 - All the sensory systems are functional \rightarrow better balance control.
 - Deprivation in visual and vestibular system lead to poorer balance control when compared to visual-impaired only people.
- Developed SAD improves postural stability more effectively as the sensory deficit level increased.
 - Range and MV decreased when sensory augmentation was provided only in the most sensory deficits condition.
 - MF and CF significantly decreased when sensory augmentation was provided in all conditions → oscillatory movements of COM was reduced.

Conclusion

- A sensory augmentation system for postural control rehabilitation has been developed using skin stretch feedback.
- The sensory augmentation due to SAD significantly improves balance.
 - Great potential in balance rehabilitation.
 - Portable device is convenient for self-monitoring and home rehabilitation.
- Future works include
 - Development of different type of controllers (e.g. velocity-based control).
 - Recruit patients with impaired sensory systems.

Thank you!

Q&A

