MECHANICAL ENGINEERING TEXAS A&M UNIVERSITY

HUR (HUman Rehabilitation) Group

☆ http://hurgroup.net

Does Inadequate Angular Momentum Regulation Cause Falls?

Moein Nazifi, Kurt Beschorner, Ph.D., and Pilwon Hur, Ph.D. 🖄 moeinnazifi@tamu.edu, beschorn@pitt.edu, pilwonhur@tamu.edu

INTRODUCTION

Motivation

- Falls impact the economy negatively, costing over \$150 billion each year [1].
- Falls also negatively impact the society, by continually being amongst the top causes of the fatal injuries in the US work places [2].
- Sagittal angular momentum (H) is a quantity representing the movement of rotation of an object. Previous studies [3] indicated that severe slippers, who are more prone to fall [4], had significantly higher H following a slip, compared to mild slippers. The two severity groups also deviated in their COM height (COM_h) and Single/Double Stance duration (SS/DS) (Fig. 2)[3, 5].

Fig. 2: Average and Standard deviations tested Asterisk significant Heel the surface

Objectives

To compare the time lead/lag between the deviations observed in COM_h , H, and single support duration to rule out or substantiate causal relationships.

Hypotheses

Data Collection

- Markers' data during normal walking were collected and slipping for analysis. Analysis
- COM_h was calculated by weightedaveraging limbs' distances and masses.
- Severe slippers showed higher H postslipping (from 3% to 27%) (pvalue<0.001, Fig. 2b).
- Mild slippers had normal SS phase while all severe slippers had a shortened SS (p-value<0.001) and placed their swing limb on the floor

We hypothesize that a time-lead over COM_h would substantiate a causal relationship between deviations in H and severe slipping, and hence, falling.

METHODS

Subjects

Twenty healthy young adults (age $(mean \pm SD) = 23.6 \pm 2.52)$ participated in this study upon signing a written consent. There were 11 males and 9 females and excluded in case of history of gait disorders.

Procedures

Participants were asked to walk at their comfortable speed in a long

- H was measured via multiplying each limb's mass, velocity, and angular velocity to its distance and moment of inertia, respectively, as it follows: H = $\sum_{i=1}^{n} m_i (r_{com/i} \times v_{com/i}) + I_i \omega_i$
- The gait cycle duration was normalized to 100 points for all subjects, and the slipping behavior was converted to 30 points (i.e. % gait cycle). The support duration analysis was done for 75% instead of 30% post-slipping (Fig. 2c). • COM_h and H were normalized to subject's weight, height, and speed.
- Subjects were classified as severe slippers if their Peak Heel Speed (PHS) during slipping exceeded 1.44 m/s [4].

after slipping ("toe-touch" behavior).

DISCUSSION and CONCLUSION

• The time lead of the deviations in *H* over COM_h suggests that the excessive rotation of the body, (i.e. higher H), causes the drop in COM_b rather than a direct vertical collapse on the legs.

- Toe-touch could be a measure to constrain and lower H, since H can only be changed via a torque around the body's COM by the swing limb.
- *H* may be a key variable in controlling slips: The CNS may choose to change its control method and incorporate the

walkway. Subjects wore a harness system throughout the experiment. Subjects performed four "practice" walking trials" getting familiar with the setup. Then, a slippery contaminant was applied to the walkway without informing the subjects.

Independent t-test was used to find differences inter-group time and sequence of deviations examined.

RESULTS

Mild slippers (12 persons) and severe slippers (8 persons) were no different during the walking but were different in all tested variables upon slipping. Severity groups differed in COM_h from 24% to 30% after slip initiation (pvalue<0.05, Fig. 2a).

toe-touch response as a measure to re-establish the balance, or even take a safer fall depending on how high H value is. Future studies should further investigate the causality of *H* to falls.

Acknowledgment:

We thank Dr. Cham for providing the experimental data for this analyses. The data was collected by Dr. Cham's NIOSH R01 grant (R01 OH007592).

References

1. Florence et al., *MMWR*, 2013.

2. BLS, Census of Fatal Occupational Injuries Summary, 20 15.

3. Nazifi et al. *ASB*, 2018.

4. Lockhart et al. *ASTM STP* 1424, 2005.

5. Yang et al. *JBM*, Vol 47, 3807-12, 2014.