

CENTER FOR ERGONOMICS AT THE UNIVERSITY OF WISCONSIN-MILWAUKEE

MOTIVATION

- Hemiparetic stroke survivors have difficulty in performing daily tasks such as picking up and releasing objects due to severe impairment in finger extension [1,2].
- Many stroke survivors can close the fingers, but cannot voluntarily extend the fingers.
- A cable-driven assistive glove intends to help extend stroke survivors' fingers [3]. However, the current glove applies suboptimal moments and compressive forces across the finger joints, causing unnatural finger opening trajectory and pain.

Cable support height

Fig 1. The current cable-driven assistive glove has the cable running parallel to the dorsal finger (i.e., constant cable support heights throughout the length of the finger) [3].

OBJECTIVES

To optimize the cable support design for applications of proper joint opening torque across the three finger joints, while minimizing joint compressive force and pressure on the skin/soft tissue.

METHODS

Modeling of the index finger and glove

Assumptions

- Confined in 2D (sagittal plane)
- The center of mass of each phalanx is at the mid point
- **Constant cable tension**
- No friction between the cable supports
- Two adjacent supports have the same height

Bone-skin distance

OPTIMIZING CABLE-DRIVEN ASSISTIVE GLOVE DESIGN TO HELP OPEN POST-STROKE PARETIC HAND

¹⁾Pilwon Hur, PhD, ²⁾Derek G. Kamper, PhD and ¹⁾Na Jin Seo, PhD ¹⁾ Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee ²⁾ Biomedical Engineering, Illinois Institute of Technology E-mail: hur@uwm.edu

Mechanical properties of the index finger

Table 1. Mechanical properties of the index f						
	DIP	PIP				
Joint Stiffness (Nm/rad) [4]	0.27	0.49				
Joint Damping (Nms/rad) [5]	0.008	0.011				
	Distal Phalanx	Middle Phalanx				
Length (mm) [5]	Distal Phalanx 24	Middle Phalanx 31				
Length (mm) [5] Mass (g) [5]	Distal Phalanx 24 3.8	Middle Phalanx 31 6.3				

Interaction between the cable and support

- Curved supports have force interaction with the cable on the curved surface
- The interaction may have benefits in generating moments
- The interaction may cause additional pressure on the finger skin

Fig 4. Derivation of equation for interaction force

The following 4 families of shape function were explored to optimal cable support shape

Extension Cable support height

Optmization criteria

subject to

RESULTS AND CONCLUSION

- found (Fig.6, Table 2)
- ✓ required cable tension

Fig 6. Optimal support design for each shape function

Table 2. Outcomes of optimal design for each shape function

		· · · · · · · · · · · · · · · · · · ·	Ŭ		
	T (N)	M (Nm)	Press (kPa)	Fcomp (N)	Total
Linear	6.2	0.31	3.85	29.1	0.167
Sinusoidal	6.2	0.31	4.45	29.9	0.170
Parabola	6.2	0.31	3.5	29.1	0.166
Bezier	6.2	0.31	2.95	29.0	0.164
Current	9.2	0.46	6.15	21.8	0.177

REFERENCES

- [1] Kamper, DG, Rymer, WZ, Muscle Nerve, 23(6),954-961, 2000
- [2] Krakauer, JW, Semin Neurol, 25(4), 384-395, 2005
- [3] Ochoa, J et al., IEEE EMBS Proc., pp6918-6921, 2009
- [4] Kamper DG, et al., Arch Phys Med Rehab 87(9), 1262-1269, 2006
- [5] Kamper, et al., J Biomech, 35, p1581-1589, 2002

ACKNOWLEDGEMENTS

This study was funded by NIH R24 Rehabilitation Engineering Research Network Center.

Current