

MOTIVATION

- Delayed responses to slipping accidents is associated with higher fall rates [1].
- Sensory deficits may delay recovery response [2].
- The sensory systems that trigger recovery responses are not well understood.
- Knowing the most critical sensory modalities

INVESTIGATING THE LINK BETWEEN KINEMATIC DEVIATIONS AND RECOVERY RESPONSE TO UNEXPECTED SLIPS **Pilwon Hur and Kurt Beschorner**

Industrial and Manufacturing Engineering, University of Wisconsin-Milwaukee E-mail: hur@uwm.edu, beschorn@uwm.edu

Web: www.uwm.edu/gabl

250

200

150

100

50

0

50

ngl

Join

TimeD

 Table 1 Correlation coefficients between all variables

Ankle	Knee	Hip	GRFap	GRFv	TA	MH	RF	MG
Ankle	.79	.82	34	26	.54	.73	45	.24
Knee	1	.73	48	46	.14	.38	67	.26
Hip		1	37	29	.70	.68	09	.55
GRFap			1	.85	.15	04	.63	.25
GRFv				1	.35	.33	.73	.32
TA					1	.85	.73	.50
MH						1	.71	.64
RF							1	.34
MG								1

may help target interventions for enhancing sensory information

OBJECTIVES

- To determine correlation between preresponse deviations and motor response to an unexpected slip.
- To determine the order of deviations of the lower-body joint angles (proprioception) and 3D foot forces (somatosensation) to identify the systems responsible for slip detection.

METHODS

Subjects

- 9 healthy young adults
- 4 male and 5 female, age=22-33years

Time (ms) Fig.2 Representative vertical GRF for the mean baseline (solid blue) +/- standard deviations (dashed blue) and the slip (red). The vertical 300

line represents the time of deviation.

Variables

- Proprioceptive TimeDev
 - Sagittal joint angles of the ankle, knee and hip for slipping leg
- Somatosensation TimeDev
 - Vertical and shear GRFs of the slipping leg
- Motor Response TimeDev
 - Rectus femoris (RF),
 - Tibialis anterior (TA)
 - Medial gastrocnemius (MG)
 - Medial hamstring (MH).

TimeDev is defined as the first time that the

 \Rightarrow Ankle-MH y = 0.5077x + 47.349 ■ Hip-MH y = 0.9756x + 1.4719 y = 2.2601x - 254.54A Hip-TA 100 150 250 300 200

TimeDev of Motor Response (ms)

Fig.3 Scatter plot showing correlation between *TimeDev's* for ankle, hip joint angles and TA and MH.

TimeDev's for each variable (Fig.4)

	1 6 1		

Procedures

- Subjects were instructed to walk normally on a walkway with 4 force plates embedded (Fig.1).
- Subjects were informed that the floor would be dry.
- Five known dry conditions were followed by an unexpected slip trial.
- The unexpected slip was induced by applying a thin layer of a diluted glycerol contamination (90% glycerol and 10% water) to the floor surface above the 3rd force plate (Fig.1) [3].

Fig.1 Foot placement on the forceplates during the known dry condition, During unexpected slip condition, the 3rd forceplate (with red arrow) was contaminated with diluted glycerol to make subject slip.

slipping profiles deviate outside the 95% CI for baseline dry walking

$$TimeDev = \min\{time \mid Dev \ge 1.96\}$$

where Dev is defined as follows:

$$Dev = \frac{Var_{slip} - mean(Var_{base})}{stdev(Var_{base})}$$

Var. joint angles, GRFs, EMG profiles slip: unexpected slip condition base: baseline (known dry condition)

Statistical analysis

- Pearson's correlation analysis was performed between all variables
- Repeated measures ANOVA to investigate *TimeDev's* differences between variables

- *TimeDev's* were significanly different (p<0.01)
- The order of TimeDev's were similar to [3] with following order: GRF, knee angle, ankle angle, and hip angle.

Fig.4 Average TimeDev's for each variable. Error bar is ± SE. Thick lines represent groups of variables that have no statistical significance.

Data collection

- 56 reflective markers were used to measure kinematic data.
- 4 surface electromyography (EMG) electrodes were attached on the leg muscles ipsilateral to slip (right).
- Ground reaction forces (GRF) for each step were measured with 4 embedded force plates.

RESULTS AND DISCUSSION

- Correlation between sensory and motor responses (Table 1, Fig.4)
- *TimeDev*'s for ankle (r=0.73, p=0.027) and • hip (r=0.68, p=0.043) joint angles were significanly correlated with *TimeDev* for MH.
- *TimeDev* for hip (r=0.70, p=0.037) joint angle lacksquarewas significantly correlated with *TimeDev* for TA.
- None of the kinematic deviations were correlated with MG or RF.

REFERENCES

[1] Mackey et al., Gait Posture, 23(1) 59-68, 2006 [2] Lockhart et al., Safety Sci, 40(7-8) 689-703, 2002

CONCLUSION

- GRF and knee joint angle deviated first but were not correlated with the motor responses.
- Motor responses were correlated with ankle and hip joint angle deviations
- Deviations from hip joint angle may not contribute to motor response.
- Deviations from multiple systems may be required to initiate a motor response.
- Sensory deficits to ankle or hip joints may inhibit the body's ability to respond to a slip.

[3] Beschorner et al., IIE Occ Ergo and Hum Fact DOI:10.1080/21577323.2012.660904, 2012