Invariant density analysis of postural sway and prospective fall risk in community-dwelling elderly

Pilwon Hur ${ }^{1}$, Hyun Gu Kang ${ }^{2,3}$, PhD
Lewis Lipsitz ${ }^{2}$, MD
Elizabeth T. Hsiao-Wecksler ${ }^{1}$, PhD

[^0]
Motivation

- The goal of MOBILIZE Boston study (MBS) is to find risk factors of falls in elderly adults
- Huge amount of MBS data sets of center of pressure (COP) is ready
- We already developed a novel tool to analyze COP

We apply this tool to MBS data set and see if this tool can be used as a prediction model for fall risks

MOBILIZE Boston Study (MBS)

- A National Institute of Aging (NIA) funded program
- A prospective cohort study of a unique set of risk factors for falls in seniors in the Boston area
- 765 elderly persons aged 70 and older participated in the study as of January 2008

Mobilize Boston
Community Senior Health Study

MBS data collection

- Home interview
- Chronic conditions, pain, falls, cognition, depression, and etc.
- First clinic visit: baseline data collection
- Second clinic visit: 18 month follow-up
- Data collected during clinic visit
- Balance, mobility performance, muscle strength, vision, and etc.
- Monthly fall occurrence calendar

SG Leveille et al. BMC Geriatr 8:16, 2008

Invariant Density Analysis (IDA)

- Analyze COP dynamics using stochastic approach (Markov chains)
- Describe COP fluctuations with probability distributions of transitioning from one state to another
- Long term COP behavior can be captured by the "invariant density" (π) i.e., stationary/steady-state probability distribution

Algorithm to get ip

- Find centroid of COP
- Zero mean adjustment
- Define states as concentric rir emanating from centroid (states separated by 0.2 mm)
- Construct the transition matrix (\mathbf{P})
- \mathbf{P} contains probabilities of transitioning from one state to transitioning from one state to
another
- Solve for the invariant density (π)

$$
\pi=\pi P
$$

Next state

$$
1 \quad 2 \quad \ldots
$$

$$
\left.\begin{array}{ccccc}
\text { Current } & 1(0) \\
\text { state } & \vdots \\
\bullet & 0 & 0 & \bullet \cdot \\
\bullet & \bullet & \bullet & \bullet & \\
\bullet & \bullet & &
\end{array}\right)
$$

Invariant density plot

Parameters

Plots of invariant density distributions (π) for young and older adults [Hur 2009]

Ppeak - Probability of being in the state with maximum likelihood

MeanDist - average state of COP sway
D95 - state below which 95% of COP points occur
$E V 2-2^{\text {nd }}$ largest eigenvalue, rate of convergence to π

Entropy - randomness of system (high \rightarrow more random, $\left.-\Sigma \pi(i) \log _{2} \pi(i)\right)$

P Hur et. al. ASME Summer Bio Conf, Lake Tahoe, CA. June, 2009

Experimental protocol

- Quiet standing (QS) on forceplate (Kistler) with sampling rate of 240 Hz
- Ten 30 sec trials with eyes open
- Five for normal QS,
- Five for dual cognitive task with serial subtraction by 3
- We only used normal QS data for the analysis

Classification of Recurrent fallers

- Recurrent fallers : subjects with more than two falls within a year of study
- Non-recurrent fallers : subjects with o or 1 fall

Results

- Non-recurrent fallers more tend to stay within certain state (Ppeak)
- Recurrent fallers are likely to sway more away from centroid (MeanDist)
- Recurrent fallers wander wider (D95)

	Non recurrent fallers	Recurrent fallers	p-value
Ppeak	0.047 ± 0.0001	0.043 ± 0.001	0.007
MeanDist	3.53 ± 0.06	3.98 ± 0.14	0.001
D95	8.43 ± 0.15	9.56 ± 0.33	<0.001

Results

- Recurrent fallers sway in more random manner (Entropy) \rightarrow It may imply recurrent fallers have less degree of active control to keep COP close to centroid
- Even though not statistically significant, it may be suggested that COP of recurrent fallers converge more slowly to a steady-state behavior (EV2)

	Non recurrent fallers	Recurrent fallers	p-value
Entropy	5.33 ± 0.025	5.47 ± 0.038	0.001
EV2	0.9992 ± 10^{-5}	0.9993 ± 10^{-5}	0.072

Conclusion and future work

- IDA can successfully differentiate RF from NF.
- COP of RF were found to fluctuate in a more random behavior than NF.
- We will develop a fall risk estimation model using multiple linear regression model.

Acknowledgement

 HRCA/Harvard Research Nursing HomeProgram Project, funded by NIH (AGoo4390)

Mobilize Boston
Community Senior Health Study

Thank you

 (phur2@illinois.edu)
[^0]: ${ }^{1}$ Mechanical Engineering, University of Illinois at Urbana Champaign
 ${ }^{2}$ Harvard Medical School; Institute for Aging Research, Hebrew Senior Life; Beth Israel Deaconess Medical Center, Boston MA
 ${ }^{3}$ Biomedical Engineering, Boston University, Boston MA

