Invariant density analysis of postural sway and prospective fall risk in community-dwelling elderly

Pilwon Hur¹, Hyun Gu Kang^{2,3}, PhD Lewis Lipsitz², MD Elizabeth T. Hsiao-Wecksler¹, PhD

I L L I N O I S

Mobilize Boston Community Senior Health Study

¹ Mechanical Engineering, University of Illinois at Urbana Champaign

² Harvard Medical School; Institute for Aging Research, Hebrew Senior Life; Beth Israel Deaconess Medical Center, Boston MA

³ Biomedical Engineering, Boston University, Boston MA

Motivation

- The goal of MOBILIZE Boston study (MBS) is to find risk factors of falls in elderly adults
- Huge amount of MBS data sets of center of pressure (COP) is ready
- We already developed a novel tool to analyze COP

MOBILIZE Boston Study (MBS)

- A National Institute of Aging (NIA) funded program
- A prospective cohort study of a unique set of risk factors for falls in seniors in the Boston area
- 765 elderly persons aged 70 and older participated in the study as of January 2008

Mobilize Boston Community Senior Health Study

MBS data collection

Home interview

- Chronic conditions, pain, falls, cognition, depression, and etc.
- First clinic visit: baseline data collection
- Second clinic visit: 18 month follow-up
- Data collected during clinic visit
 - Balance, mobility performance, muscle strength, vision, and etc.
- Monthly fall occurrence calendar

SG Leveille et al. BMC Geriatr 8:16, 2008

Invariant Density Analysis (IDA)

- Analyze COP dynamics using stochastic approach (Markov chains)
 - Describe COP fluctuations with probability distributions of transitioning from one state to another
 - Long term COP behavior can be captured by the
 "invariant density" (π) i.e., stationary/steady-state
 probability distribution

Algorithm to get i

Next state

0.3 0.2

j+

Current

state

3

- Find centroid of COP
 - Zero mean adjustment
- Define states as concentric rir emanating from centroid (states separated by 0.2 mm)
- Construct the transition matrix (**P**)
 - P contains probabilities of transitioning from one state to another
- Solve for the invariant density (π)
 - $\pi = \pi P$

Invariant density plot

Plots of invariant density distributions (π) for young and older adults [Hur 2009]

Parameters

Ppeak – Probability of being in the state with maximum likelihood

MeanDist – average state of COP sway

- D95 state below which 95% of COP points occur
- $EV2 2^{nd}$ largest eigenvalue, rate of convergence to π
- *Entropy* randomness of system (high \rightarrow more random, $-\Sigma\pi(i)\log_2\pi(i)$)

P Hur et. al. ASME Summer Bio Conf, Lake Tahoe, CA. June, 2009

Experimental protocol

- Quiet standing (QS) on forceplate (Kistler) with sampling rate of 240 Hz
- Ten 30 sec trials with eyes open
 - Five for normal QS,
 - Five for dual cognitive task with serial subtraction by 3
- We only used normal QS data for the analysis

SG Leveille et al. BMC Geriatr 8:16, 2008

Classification of Recurrent fallers

- Recurrent fallers : subjects with more than two falls within a year of study
- Non-recurrent fallers : subjects with 0 or 1 fall

Results

- Non-recurrent fallers more tend to stay within certain state (*Ppeak*)
- Recurrent fallers are likely to sway more away from centroid (*MeanDist*)
- Recurrent fallers wander wider (**D95**)

	Non recurrent fallers	Recurrent fallers	p-value
Ppeak	0.047±0.0001	0.043±0.001	0.007
MeanDist	3.53 ± 0.06	3.98 ± 0.14	0.001
D95	8.43±0.15	9.56±0.33	<0.001

Results

- Recurrent fallers sway in more random manner (*Entropy*)
 - \rightarrow It may imply recurrent fallers have less degree of active control to keep COP close to centroid
- Even though not statistically significant, it may be suggested that COP of recurrent fallers converge more slowly to a steady-state behavior (*EV2*)

	Non recurrent fallers	Recurrent fallers	p-value
Entropy	5.33 ± 0.025	5.47±0.038	0.001
EV2	0.9992 ±10 ⁻⁵	0.9993 ±10 ⁻⁵	0.072

Conclusion and future work

- IDA can successfully differentiate RF from NF.
- COP of RF were found to fluctuate in a more random behavior than NF.
- We will develop a fall risk estimation model using multiple linear regression model.

Acknowledgement

HRCA/Harvard Research Nursing Home Program Project, funded by NIH (AG004390)

Community Senior Health Study

Thank you (phur2@illinois.edu)