Characterizing the sway response of the human postural control system to an impulse perturbation

INTRODUCTION

- This study investigated the postural sway response to an impulsive perturbation and examined how this response varies with age.
- Although most losses of balance result from a sudden disturbance, the majority of studies examining the response to continuous perturbations (e.g., [1,2]).
- Therefore, we explored the response to an impulse perturbation (i.e., a mild backward impulse force applied to the pelvis).

METHODS

Subjects

Table 1. Subject demographics, mean and (S.D.), for young adults (YA), middle-aged adults (MA), and older adults (OA). No significant differences in weight or height (p<0.05).

Parameter	YA n = 10	MA n = 10	OA n = 10
Females	5	5	6
Mean age (y)	22.4 (3.1)	47.1 (3.8)	75.6 (2.6)
Age Range (y)	20 - 30	42 - 53	71 - 79
Weight (kg)	69.2 (8.1)	76.0 (12.8)	72.7 (15.3)
Height (cm)	170.0 (18.7)	169.1 (11.9)	166.0 (11.4)

Experimental Protocol

- Twenty randomized trials were conducted: 10 guietstanding trials and 10 perturbed trials, all 30 s in duration.
- The subject was instructed to maintain a guiet, upright posture throughout the recording.
- The subject stood with arms crossed at the chest and eyes open. During perturbed trials, the weight

was released, causing a brief mild tug. During quiet-stance trials, no action was taken. Ground reaction force and COP were recorded with a force plate (AMTI, BP600900). Tug force was recorded with a load cell (PCB Piezotronics, 208C02). Both sampled at 1000 Hz.

Elizabeth T. Hsiao-Wecksler, Brett A. Duiser, and Pilwon Hur

Department of Mechanical Sciences & Engineering Human Dynamics and Controls Laboratory University of Illinois at Urbana-Champaign, Urbana, IL

Data Processing

- Anterior-posterior (AP) sway response was evaluated using
 - Descriptive parameters of the center of pressure (COP)
 - Spectral analysis system identification of a postural control model based on lean angle of the center of mass (COM).

Descriptive parameters of AP COP data:

- MaxDisp (max posterior displacement)
- NormMaxDisp (MaxDisp*Weight / Height*TugForce)
- Range (difference between max and min displacements)
- Latency (time from the peak tug force to MaxDisp)

Latence

Spectral analysis system identification:

The perturbed postural control system was modeled as a singlelink inverted pendulum modulated by active and passive torques generated by a time-delayed proportional-derivative controller with parameters (K_{α} , K_{d} , τ) and a spring-damper compensator (k, b), respectively

The gravity-line projection method [4] was used to derive COM displacement from AP force and COP data. The lean angle of the COM (θ) was then computed.

NEUROSCIENCE 2006 Atlanta, GA Oct 14-18 Poster: 558.4

- Spectral analysis sysID was used to fit experimental response data to the model and compute model parameters [3]
- Robustness of the modeled system was quantified by the maximum of the sensitivity function (MaxSens).
- The sensitivity function describes how sensitive a system is to small perturbations; larger values indicate reduced robustness or decreased relative stability.

$$Sens = \frac{Js^2 - mgh}{Js^2 + bs + (k - mgh) + (K_p + K_d s)e^{-t}}$$

Table 2. Mean (SD) descriptive and spectral analysis sysID results.

Parameter	YA	MA	OA	p-value*
Peak Force (N)	6.54 (0.48)	6.75 (0.70)	6.40 (1.29)	0.68
MaxDisp (mm)	20 (8)	18 (5)	23 (6)	0.22
NormMaxDisp	0.28 (0.09)	0.27 (0.07)	0.35 (0.08)	0.08
Range (mm)	29 (7)	26 (4)	32 (9)	0.19
Latency (ms)	183 (35)	157 (34)	157 (22)	0.11
K _p (N·m/rad)	1035 (186)	1172 (509)	977 (433)	0.54
K _d (N·m·s/rad)	367 (87)	509 (362)	422 (147)	0.38
τ (ms)	136 (50)	157 (140)	109 (48)	0.82
k (N.m/rad)	125 (116)	377 (540)	231 (294)	0.31
b (N.m.s/rad)	41 (88)	130 (269)	15 (49)	0.29
MaxSens (dB)	2.33 (0.39)	2.26 (0.59)	3.03 (0.77)	0.014

SUMMARY

- Descriptive measures did not detect differences in sway response due to age.
- MaxSens was significantly larger for older adults than young or middle-aged adults suggesting that OA are closer to the point of instability.
- The sensitivity function appears to be a useful parameter for examining stability of the postural control system.

References:

[1] A. Ishida et al. IEEE Trans Biomed Eng 44: 331-336, 1997. [2] R. Johansson et al. IEEE Trans Biomed Eng 35: 858-869, 1988. [3] R.J. Peterka. J Neurophysiol 88: 1097-1118, 2002. [4] V.M. Zatsiorsky and M. Duarte. Motor Control 4: 185-200, 2000.

Acknowledgements:

Funded by the Center for Advanced Studies and the Campus Research Board at the University of Illinois at Urbana-Champaign.