

Unified Control Framework of Transfemoral Prosthesis for Inclined Walking using Bezier Polynomials based Optimization

HUman Rehabilitation (HUR) Group

Woolim Hong and Pilwon Hur, Ph.D.

{ulim8819,pilwonhur} @tamu.edu

RESEARCH HIGHLIGHT

- Achieving the inclined walking for powered transfemoral prosthesis with an unified controller
- Avoiding heavy optimization for real-time performance
- Smooth transitions for any inclined surfaces

PREVIOUS RESEARCH

Stable level walking gait [1]

Human inspired optimization generates a set of outputs called canonical walking functions. By tracking them, a biped model yields stable human-like walking.

 $y(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}, \boldsymbol{\alpha}) = \begin{bmatrix} y_1(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}, \boldsymbol{\alpha}) \\ y_2(\boldsymbol{\theta}, \boldsymbol{\alpha}) \end{bmatrix} = \begin{bmatrix} y_1^a(\boldsymbol{\theta}, \dot{\boldsymbol{\theta}}) - v_{hip} \\ y_2^a(\boldsymbol{\theta}) - y_2^d(\boldsymbol{\rho}(\boldsymbol{\theta}), \boldsymbol{\alpha}) \end{bmatrix}$

BEZIER POLYNOMIALS OPTIMIZATION

- Cubic Bezier polynomials generates the desired walking trajectories for the swing phase.
- The generic cubic Bezier polynomials are described as below where $t \in [0,1]$:

 $Z(t) = (1-t)^{3}P_{0} + 3t(1-t)^{2}P_{1} + 3t^{2}(1-t)P_{2} + t^{3}P_{3}$

Fig. 3 The relationship between (P_1, P_2) and (P_0, P_3)

IMPEDANCE CONTROL

- During the stance phase, impedance control is used to adopt to different terrain conditions.
- The torque at each joints can be described in series of passive impedance parameters which are the function of the phase variable.

$$= k(\theta - \theta^e) + b\dot{\theta}$$

The optimal stiffness, damping, and equilibrium were chosen from the previous studies [3-5].

EXPERIMENTAL SETUP

Powered Transfemoral Prosthesis

 AMPRO II, the 2nd generation of A&M powered transfemoral prosthesis, has two actuations at ankle and knee.

The condition to ensure stability is based on the invariance of the Partial Hybrid Zero Dynamics (PHZD) set under impacts.

> $PZ_{\alpha} = \{(\theta, \dot{\theta}) \in TQ_R : y_2(\theta, \alpha) = 0, L_f y_2(\theta, \alpha) = 0\}$ $\Delta_R(S_R \cap PZ_\alpha) = PZ_\alpha$

Spline generation for upslope walking [2]

- Make the upslope walking trajectories converge into a stable level walking trajectory using cubic splines.
- A set of splines with smoothness conditions on position, velocity and acceleration are considered.
- In particular, the optimization turns out to be a linear square minimization problem, and its solution provides all the cubic splines coefficients.

Fig. 1 Spline based trajectory

Limitation

- Requires demanding optimization (solved in off-line)
- Limited to the upslope walking only

By controlling P₁ & P₂, any different inclined walking curves can be generated.

Fig. 4 H_i indicates a human walking trajectory of the ith slope condition, where i = $\{1,2,3,4,5,6,7\} \equiv \{-15^\circ, -10^\circ, -5^\circ, 0^\circ, 5^\circ, 10^\circ, 15^\circ\}$ inclination. P_0 , P_3 refer to the joint angle at 60%, 85% of a gait cycle, respectively.

- The optimization problem is solved to minimize the sum of error between the Bezier curves and corresponding human trajectories.
- P₀ is updated in every single gait cycle and P₃ is fixed point since all trajectories are merging at this point. $\overline{P_0P_1}_{r}$, $\overline{P_2P_3}_{r}$ are free variables to determine the control points P_1 , P_2 .
- Using Bezier polynomials based optimization, any inclined walking trajectories can be generated analytically.

AMPRO II detects a contact with the ground based on 5 FlexiForce sensors located on its foot.

IMU Setting

An IMU placed on the prosthesis detects the thigh angle, which is used as the phase variable to synchronize with the user's walking progression.

Test Environment

- On a treadmill with 3 different slopes (-5°,0°, and 5°)
- User comfort speed (1.71 km/h)

CONCLUSIONS

The Proposed Method ...

RESULTS

- Allows the prosthesis to achieve the inclined walking in real-time.
- Generates any inclined walking trajectories regardless of inclination using Bezier polynomials based optimization.
- Achieves the user comfort at stance phase using impedance control.

CONTROL FRAMEWORK

Fig. 2 Ankle/Knee joint angle trajectories for 7 different slopes.

Stance Phase (blue region)

Prosthesis is controlled using impedance parameters of human subject.

- The prosthetic data was captured from 2 encoders on the prosthesis for each joint.
- It is shown that the actual data follow the desired trajectories in the shaded region for each terrain condition.
- Because of the physical constraints (the frame of the prosthesis), the knee flexion cannot exceed 63°.

Fig. 5 Ankle and knee trajectories for 5 different slopes. The red region indicates the area of trajectory tracking to follow the desired trajectories based on Bezier curve.

References

[1] A. D. Ames. *Robot Motion and Control,* 2012. [2] V. Paredes, et al., IROS, 2016. [3] H. Lee, et al., *Transactional Engineering* in Health and Medicine, 2016. [4] E. J. Rouse, et al., Neural Systems and

