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Abstract— To generate a dynamic bipedal walking with foot
rolling motion for bipedal robot, hybrid trajectory optimization
is capable of planning level walking with great energetic effi-
ciency. However, the direct implementation of this optimization
requires different sets of variables to express different active
contact constraints, which can be complicated to implement.
To simplify the optimization formulation, we propose the
generalized contact constraints where the same set of variables
are used through all the walking phases. By changing the
variable and constraint bounds, different contact constraints
for different contact conditions can be generally expressed.
The proposed modifications are applied on the bipedal robot
AMBER 3, where the optimization results on different terrains
are compared and discussed. On the other hand, it is known that
a randomized initial guess can be used to solve this optimization,
yet its effect on the gaits on different terrains is unclear. As a
result, we analyzed the sensitivity of the optimization to a set
of randomized initial guesses. The level and downslope walking
gaits are also validated via the experiments on AMBER 3.

I. INTRODUCTION

Generating a dynamic bipedal walking gait which lets
bipedal robots walk like humans has been a milestone that is
yet to be achieved. Among various characteristics in human
walking, the great energetic efficiency in terms of low Cost of
Transport (COT) [3] and foot rolling motion are two remark-
able ones. Though it has been achieved by underactuated
bipedal robots [9], it is even more challenging to implement
those features on the bipedal robots that have the control
authority to actively switch between different actuation types.
To enable the bipedal robot AMBER 3 (Fig. 1) to perform
such complex dynamic behavior, trajectory optimization with
direct collocation is a powerful framework to generate the
dynamic walking for high dimensional bipedal systems.

For solving the walking gait with multiple phases in
particular, there are two main state-of-the-art approaches: tra-
jectory optimization through contact [10], [4], [8] and hybrid
trajectory optimization [5], [6], [14]. With no need to specify
the contact sequence, trajectory optimization through contact
(or contact-implicit trajectory optimization), proposed by
Posa et al. [10], simultaneously optimizes all the states,
controls and contact forces of all the potential contact points,
where the problem is formulated as a nonlinear optimization
with complementary constraints. However, the relaxation of
complementary constraints with nonlinear solvers such as
SNOPT or IPOPT needs to be handled carefully for a target
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Fig. 1: The human-sized planar bipedal robot AMBER 3
(left). It is 148 cm tall, weights 33.4 kg, with active hip,
knee and ankle joints and passive toes and heels.

environment [10], [4], [8], which makes this method more
complicated to be adopted when the gait parameter or terrain
profile is changed.

On the other hand, hybrid trajectory optimization (e.g.,
the gait optimization method proposed by Hereid et al. [5],
[6] to optimize the hybrid zero dynamics (HZD) [13], [12])
requires a predefined contact sequence. One important merit
of this approach is that it is less sensitive to the initial
guess (as the optimization can be solved with a randomized
initial guess [6]). To efficiently achieve dynamic walking
generation on various terrains and gait parameters, we adopt
the hybrid trajectory optimization, which is introduced in
Section III. In Section IV we present the generalized contact
constraints which can be used for all contact conditions and
different terrains (including slopes and stairs). In Section V,
the optimization results for different terrains are compared
and discussed. The sensitivity of this framework to random-
ized initial guesses, and the experimental results of level
walking and downslope walking as validations are shown.
Conclusions and future work are presented in Section VI.

II. BIPEDAL LOCOMOTION AS A HYBRID SYSTEM

For a bipedal locomotion system, it can be described as a
hybrid system, which contains both continuous and discrete
dynamics. A domain (or a walking phase) in general is
specified with a set of contact conditions across possible
contact points. The continuous dynamics is used to describe
the system behavior in a domain. The discrete dynamics
is used to describe the state transition from one domain
to another, where the guard defines the state condition to
trigger the state transition.
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Continuous Dynamics. The dynamics of a rigid body model
can be expressed as follows:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JTλ (1)

where q is the generalized coordinate, D(q) is the inertia
matrix, C(q, q̇) is the Coriolis matrix, G(q) is the gravity
vector, J is the Jacobian matrix of the contact position φ(q)
such that J = ∂φ/∂q, B is the torque distribution matrix, u
is the control input, and λ is the contact force. The contact
position in 2D can be described as φ(q) = [φx(q), φz(q)]T ,
where x is the horizontal axis and z is the vertical axis.
Discrete Dynamics. When the contact condition of the sys-
tem is changed (e.g., a new contact is achieved or a existing
contact breaks), the state of the system will have a discrete
change. A classic example is the joint velocity change due to
the impact induced by heel-strike (or foot-strike). Following
the hypothesis listed in [12], the equations governing the
kinematics and dynamics about a new established contact
can be expressed as:[

D(q−) −JT
e

Je 0

] [
q̇+

δFimpact

]
=

[
D(q−)q̇−

0

]
(2)

where the superscript ’+’ denotes the post-impact state, the
superscript ’−’ denotes the pre-impact state, D(·) is the
inertia matrix (note D(q−) = D(q+)), Je is the Jacobian
matrix of the new established contact point, and δFimpact is
the impact impulse. The first row of Eq. (2) is the momentum
equation during impact, and the second row is the velocity
of the new established contact position. For the case where
only the existing contact breaks, the state continuity holds
(i.e., q− = q+ and q̇− = q̇+) as no impact is induced.

III. HYBRID TRAJECTORY OPTIMIZATION FOR WALKING
WITH MULTIPLE CONTACT PHASES ON FLAT GROUND

In this section, the method of trajectory optimization
using direct collocation for hybrid systems with multiple
domains will be introduced. To establish the hybrid trajectory
optimization, the contact sequence needs to be specified, and
the trajectory is divided to several domains.

A. Contact Sequence from Human Data
When a stable periodic gait with multiple domains reaches

the steady state, the order of phases and the transitions
in general will be fixed and periodic; therefore, it enables
the usage of a predetermined contact sequence to solve
the hybrid trajectory optimization. We are using the contact
sequence shown in Fig. 2, which is similar to the sequence
used in [6]:

Fig. 2: The schematic (a directed graph) of the contact
sequence from human data.

B. Hermite-Simpson Collocation
In our direct collocation, the Hermite-Simpson method is

used, where all the joint variables q, q̇, q̈ are discretized
as nodes of cubic-splines. The Hermite-Simpson constraint
HHSM (·) for relating the states in adjacent collocation points
k − 1 to k + 1 (where k is an even number) in the domain
n can be stated as:

xk − 1
2 (xk+1 + xk−1)− 1

8∆tn(ẋk−1 − ẋk+1) = 0
xk+1 − xk−1 − 1

6∆tn(ẋk−1 + 4ẋk + ẋk+1) = 0
(3)

where xk = [qk, q̇k]T , and ∆tn is the time step in the domain
n. Please refer to [2], [7], [6] for more information.

C. Constrained Dynamics
At each collocation point, given the joint state variables

q, q̇, q̈1, the control u, and ground reaction forces λ at the
active contact point(s) φ(q), the constraints of constrained
dynamics HCDym(·) can be expressed as follows:{

D(q)q̈ + C(q, q̇)q̇ +G(q)−Bu− JTλ = 0

Jq̈ + J̇ q̇ = 0
(4)

D. Setup of Other Constraints
In this section, the other important building blocks

of the hybrid trajectory optimization for multi-domain
bipedal walking will be introduced. Starting from the
contact constraints for contact dynamics (for the 2D case,
which can be readily extended to 3D [10]), the boundary
constraints and periodic constraints relating boundary
collocation points between domains will be explained.

Contact Constraints for Flat Ground. For each active
contact point φ(q) with corresponding contact force λx
and λz , assuming the contact position is non-sliding, a set
of equalities and inequalities HContact(·) can be used to
describe the Coulomb friction model (for the 2D case):

λz ≥ 0, ∞ ≥ λx ≥ −∞ µλz − |λx| ≥ 0
φz(q) = 0
Jq̇ = 0

(5)

where µ is the friction coefficient, φz(q) is the normal
distance from the contact point to the contact surface, and J
is the Jacobian matrix of the contact point position φ(q).
Guard Constraints. When a contact is about to be achieved,
the guard constraints HGuard(·) can be expressed as:{

φz(q) = 0
Jz q̇ ≤ 0

(6)

Boundary Constraints. As we introduced in the previous
section about the discrete dynamics (Eq. (2)), the bound-
ary constraints of collocation points between each domain
HBoundary(·) can be expressed as:

∞ ≥ δFimpactx ≥ −∞, δFimpactz ≥ 0{
q+ − q− = 0
D(q−)(q̇+ − q̇−)− JT

e δFimpact = 0
(7)

1Starting from this section, for simplicity the subscript k for every free
variables at node (collocation point) k is omitted, e.g., xk → x, qk → q.
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where δFimpact = [δFimpactx , δFimpactz ]T in 2D. Note the
constraint Jeq̇+ = 0 is already imposed as part of the contact
constraint in the next domain in Eq. (5).
Periodic Constraints. The periodic condition HPeriodic(·)
is the slightly modified boundary constraint shown below:

∞ ≥ δFimpactx ≥ −∞, δFimpactz ≥ 0 R(qstart)− qend = 0
D(qend)(R(q̇start)− q̇end)− JT

e δFimpact = 0
xcom(qend)− xcom(qstart) ≥ dmin

(8)

where R is the relabeling matrix to swap joint variables
between legs and dmin is the minimum horizontal traveling
distance of the center of mass position xcom.
Cost Function for Multi-phases. Similar to other works [6],
[10], the Cost of Transport (COT) is chosen as the objective
function. Using Simpson’s quadrature rule to calculate the
integral, the cost in a domain n can be expressed as:

Jn(X) =

Mn∑
j=1

ωjP (uj , q̇j) , (9)

ωi =


1
6∆tn if j = 1 or j = Mn
2
3∆tn if j is even
1
3∆tn else

(10)

where ∆tn is the time step in the domain n (i.e., the
time duration between collocation point k − 1 and k + 1 in
Eq. (3)), Mn (an odd number) is the number of collocation
points in the domain n (n ∈ [1, 2, ..., N ]), and P (·) is the
summation of the absolute values of the power consumption
of all actuators. The overall cost then can be calculated as:

J(X) =
1

mgd

N∑
n=1

Jn(X) (11)

where mg is the robot weight, d is the traveling distance.

E. Optimization Formulation

Assuming the target system has N domains and M
collocation points, the set of free variables X is defined as
{qi, q̇i, q̈i, ui, λi, γi, δFimpactn ,∆tn} for all i ∈ [1, 2, . . .M ],
n ∈ [1, 2, . . . N ], and the hybrid trajectory optimization can
be expressed as the following:

X∗ = argmin
X

J(X) (12)

s.t. Xlb ≤ X ≤ Xub

Heq(X) = 0

Hiq(X) ≥ 0

where Xlb and Xub are the lower bound and upper bound
of X . Heq(·) and Hiq(·) are the collections of equality and
inequality constraints introduced in Eqs. (3) to (8).

IV. GENERALIZED CONTACT CONSTRAINTS OF HYBRID
TRAJECTORY OPTIMIZATION FOR MULTIPLE DOMAINS

AND DIFFERENT TERRAINS

The hybrid trajectory optimization introduced in the pre-
vious section provides a systematic framework that can gen-
erate efficient walking gait with multiple phases, which has

been validated by 3D humanoid robot DURUS [6]. However,
the direct implementation of the formulation described in
Eq. (12) can be complicated because the contact constraints
in Hcontact(·) are imposed for different contact points or
different numbers of contact points in different domains, and
only the level walking was tested in the previous works [5],
[6]. In this section, we will introduce the contact constraints
that can be generally used in any domain (where only the
constraint or variable bounds need to be varied) and different
terrains (including stairs or ramps).

A. Contact Constraints Inspired by Optimization through
Contact

To simplify the optimization problem and improve its
sparsity, we adopt a scheme similar to the one depicted in
[10]. By introducing a few slack variables, we replace the
absolute value and the normal velocity at the active contact
points in Eq. (5) as follows:

λz, λ
−
x , λ

+
x ≥ 0, γ = 0

HActiveContact(·) =

 µλz − λ−x − λ+x ≥ 0
φz(q) = 0
γ − Jq̇ = 0

(13)

where λ−x + λ+x = |λx| and −λ−x + λ+x = λx. On the
other hand, the constraints for inactive contact points can
be expressed as :

λz, λ
−
x , λ

+
x = 0, ∞ ≥ γ ≥ −∞

HInactiveContact(·) =

 µλz − λ−x − λ+x = 0
φz(q) ≥ 0
γ − Jq̇ = 0

(14)

The constraints for inactive contact points seem redundant
by intuition, but its insertion to the optimization has the
following benefits:

1) This can simplify the formulation of both constrained
dynamics and contact constraints because the only
difference between the active and inactive contact
constraints are their constraint and variable bounds.
Therefore, the same dynamic equations and the same
contact constraints can be generally expressed in every
domain for all the possible contact conditions.

2) Similar to the separated form of Hermite-Simpson
method [2], this method can slightly improve the
sparsity of the optimization by introducing extra free
variables.

3) On the other hand, without changing the constraint
expression, the contact constraint can also be modified
to express the constraints at the guard (when a contact
is about to be achieved):

λz, λ
−
x , λ

+
x = 0, γz ≤ 0, ∞ ≥ γx ≥ −∞

HGuard(·) =

 µλz − λ−x − λ+x = 0
φz(q) = 0
γ − Jq̇ = 0

(15)
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(a) Slope walking (b) Stair walking

Fig. 3: The schematics of slope walking and stair walking.

B. Contact Constraints for Ramps and Stairs

With the contact constraints that can generally apply to any
domain for flat terrain, the next step is to extend it for other
terrains. This can be achieved by redefining the height from
the contact point to the contact surface φz(q) in the contact
constraints Eq. (13), Eq. (14) and Eq. (15). As shown in
Fig. 3 (a) and (b), assuming the origin is at the toe of the
trailing leg, then a ramp profile can be expressed with the
slope angle α, and a stair profile can be described with the
stair height h, and ωfront and ωback which are related to
the stair width. The general expression of φz(q) then can be
derived as follows:

Φ(q) = φz(q)− φx(q)tan(α)− hstair(q) (16) Φz(q) = 0 ∀HActiveContact(·)
Φz(q) ≥ 0 ∀HInactiveContact(·)
Φz(q) = 0 ∀HGuard(·)

where

hstair(q) =

 −h if φx(q) < wback

0 if wfront ≥ φx(q) ≥ wback

h if φx(q) > wfront

(17)

With this expression, Fig. 3 (a) becomes the special case
with h = 0 and Fig. 3 (b) is the case with α = 0. In this
way, the targeted terrain of the gait optimization can be easily
changed by adjusting those parameters based on the terrain
profile.

V. OPTIMIZATION RESULTS

In this section, by using the proposed contact constraints,
the optimization results of bipedal walking on flat ground,
different slopes and stairs are presented. Starting from the
optimization setup, the remarks of the optimization results
on different terrains and the related optimization sensitivity
to the random initial guesses will be presented and discussed.

TABLE I: Details of the gait optimization with proposed
contact constraints for bipedal robot AMBER 3.

Free variable # 2355 Constraint # 2721
Equality constraints # 1927 Inequality constraints # 794

Domain # 4 Node # in domains [21,21,21,5]
Objective function COT Jacobian sparsity 0.4%

A. Optimization Setup

We use IPOPT with the linear ma57 solver and its
MATLAB interface for the optimization implementation.
The expression of constraints and their analytical Jacobian
matrices are derived using Wolfram Mathematica, where the
matrices are expressed in the form of sparse matrices. The
optimization summary is shown in Table I. For all the results,
the order of the domains and the corresponding contact
conditions are depicted in Fig. 2, and the time step for each
domain ∆tn is constrained within [1e − 5, 0.5]. To reduce
the torso swaying, the torso angle is constrained within
[−0.15, 0.15] rad (for slope walking the range is [−α, α]
rad where α is the slope angle).

B. Gait Optimization on Different Terrains

In this section, we present our main result – walking on
different terrains (flat ground, ramps and stairs) generated
from the introduced optimization framework for AMBER 3.
Note all the optimization results are the periodic gaits.

To generate the optimization results also analyze the
optimization sensitivity to randomized initial guesses, we ran
the same optimization for each terrain with 200 randomized
initial guesses, and then picked the solution with the lowest
COT. The cost of transport, walking speed, and time step in
each domain (∆tn) of the optimization results are listed in
Table II. In the following the remarks of generated gaits on
different terrains will be presented and discussed.
Flat-ground walking. Among walking on different terrains,
level walking with multi-domain has the lowest COT 0.096.
The extremely small fourth ∆tn in the fourth column of
Table II indicates that the toe-strike of the front leg and the
toe-off of the trailing leg happen almost at the same time.
Slope walking. Compared to level walking, it is shown that
for slope walking (Fig. 4), the larger the slope angle (|α|),
the larger the COT. The optimization results in Table II also
indicate that the gait on ramp ascent with the same slope
angle generally requires larger COT than the ramp descent.
Another finding of the comparison between upslope and
downslope walking is that upslope walking tends to have
a smaller torso swaying, as the torso swaying on upslope
requires more energy to work against the gravity. In addition,
it is found that when the slope angle becomes lager, the
fourth ∆tn in Table II becomes much greater than 1e− 5.
Stair walking. Fig. 5 shows the optimization result of
stair walking ascent and descent. One obvious difference
between stair walking and other gaits is that the third ∆tn
for stair walking in Table II is smaller so that the front
foot achieves flat contact more quickly. To demonstrate the
capability of the optimization framework for generating stair
walking, we only tried a few terrain profiles for two reasons.
First, compared to the slope walking, stair walking is more
complicated to solve, as the contact constraints for stair
walking are not smooth. Second, the biomechanics study of
stair walking [11] indicates that in stair walking the forefoot
strikes the ground first, which is different from the sequence
we used. To get better optimization results for stair walking,
the contact sequence must be modified accordingly.
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(b) α = 0.2rad

Fig. 4: The walking tiles of slope walking.

-0.5 0 0.5
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a) h = −0.1m, w = 0.5m
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(b) h = 0.08m, w = 0.5m

Fig. 5: The walking tiles of stair walking.

TABLE II: The summary of optimization results on different
terrains

Terrain COT Step time ∆tn
(s) (s)

Flat ground 0.096 1.35 [0.030, 0.030,
0.014, 1e− 5]

Ramp descent 0.121 1.48 [0.030, 0.03,
(α = −0.1rad) 0.021, 1e− 5]

Ramp descent 0.214 1.59 [0.030, 0.030,
(α = −0.2rad) 0.023, 0.023]

Ramp ascent 0.170 1.39 [0.030, 0.030,
(α = 0.1rad) 0.016, 1e− 5]

Ramp ascent 0.266 1.58 [0.030, 0.030,
(α = 0.2rad) 0.022, 0.028]

Stair descent 0.356 1.20 [0.030, 0.030,
(h = −0.1m, w = 0.5m) 0.006, 1e− 5]

Stair ascent 0.357 1.16 [0.030, 0.030,
(h = 0.08m, w = 0.5m) 0.004, 1e− 5]

C. Optimization Sensitivity to Randomized Initial Guesses

In this subsection, we present and discuss the optimization
sensitivity to the initial guess. Because the formulated opti-
mization is nonlinear and non-convex, a solver like IPOPT
will return a local optimal solution rather than a global one.
As a result, the initial guess for X in Eq. (12) can have
a significant effect on the optimization result. Though in
[6] it is mentioned that this optimization framework can be
used with a randomized initial guess, it is still not clear how
well a randomized initial guess can be used for different
terrains, and a good initial condition for the gait with the
complex contact sequence can be hard to derive. To get
more understanding about the optimization sensitivity to
randomized initial guesses, in Fig. 6 we show the histograms

(a) Level walking (b) Slope descent (α = 0.1rad)

(c) Slope descent (α = 0.2rad) (d) Slope ascent (α = 0.2rad)

(e) Stair descent (h = −0.1m,
w = 0.5m)

(f) Stair ascent (h = 0.08m,
w = 0.5m)

Fig. 6: The histograms of walking gaits on different terrains

of the optimization results, and present the distribution of
COTs versus a set of initial guesses (where for each terrain,
200 randomized initial guesses generated using rand() in
MATLAB were used to solve 200 gaits). The histogram can
be a good indicator to show the optimization performance as
well as the optimization complexity for each terrain. In Fig. 6
(a) for level walking, more than 100 initial guesses result in
COTs lower than 0.2, which shows that the hybrid trajectory
optimization can work with randomized initial guesses quite
well. In addition, we found that when the downslope is
steeper, the number of gaits having lower COTs increases.
This seems reasonable because on a steeper slope, the larger
potential energy can convert to the kinetic energy, and a
local optimal solution with lower COT can then be more
easily found. Conversely, when a walking gait needs to work
against the gravity, the distribution becomes flatter (e.g.,
Fig. 6 (d)). This indicates it is possible but more difficult to
get a great local optimal solution, and a better initial guess
is more important in this case. Similarly, flat histograms can
also be observed for stair walking as shown in Fig. 6 (e) and
(f), where the nonsmooth φz(q) make the optimization more
difficult to be solved with low COT.

D. Experiment Results

The level walking and downslope (5o) walking generated
from the modified framework were tested on AMBER 3,
where the gaits were achieved with consecutive steps. As
shown in Figs. 7 and 8 and the video [1], the contact
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Fig. 7: The walking tiles of the level-walking experiment.

Fig. 8: The walking tiles of the downslope walking.

sequence of AMBER 3 matches the predefined contact se-
quence in Fig. 2. The phase portraits of the joint trajectories
for the level walking and downslope walking are shown in
Fig. 9, where the desired trajectories are from the optimiza-
tion results. Although with the presence of disturbances such
as joint frictions, the fluctuation of the treadmill speed, and
the lateral support may push or drag the robot, those phase
portraits can show that the experiment results are similar to
the optimization results, which validate the framework with
the generalized contact constraints.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we presented the generalized contact con-
straints for hybrid trajectory optimization to generate walking
gaits on various terrains. With the modified contact con-
straints, this optimization framework can generate walking
gaits on flat terrain, slopes, or stairs with different profiles,
where the resulting gaits are compared and discussed. We
also presented the histograms of optimization results with
randomized initial guesses, which indicate the performance
and the complexities of the optimization for different terrain
profiles. The experimental results are also presented as
validations. In the future, we plan to use this optimization
framework to build a gait library to create more complex
behaviors, and use it with the model of the human and lower-
limb prosthesis to generate walking gaits for amputees.
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