A Direct Method of Trajectory Optimization for Compass Bipedal Locomotion under Terrain Uncertainty

HUMAN REHABILITATION (HUR) Group

Kenneth Yi-wen Chao and Pilwon Hur, Ph.D.

kchao@tamu.edu, pilwonhur@tamu.edu $\widehat{\Omega}$ http://hurgroup.net

Research Highlights

- Objective: generate a robust walking trajectory under terrain uncertainty.
- A method for compass gait generation which incorporates:

1) Trajectory optimization with direct collocation (can be scaled well to high dimensional problems [1,2]).
2) A robust cost in optimization to reflect the walking robustness [3].

Walking Robustness

The walking robustness is quantified by calculating the distance between the post-impact state $\Delta\left(x_{i}\right)$ and its projection on the nominal trajectory $\Pi\left(\Delta\left(x_{i}\right)\right)$ [3].

Main Idea

Evaluate the walking robustness of heel-strike by sampling stepping time near nominal step time t_{F} !

Optimization Formulation

- With $x=\left[x_{1}, \ldots, x_{N}\right], u=\left[u_{1}, \ldots, u_{N}\right]$ and t_{F} as free variables, the optimization can be expressed as:

$$
\min _{x, u, t_{F}} J_{0}(x, u)+\omega \sum_{i=k-d}^{k+d=N} J_{i}\left(x_{i}, u_{i}\right)
$$

$$
\text { s.t. } \quad \Delta\left(x_{k}\right)=x_{1}
$$

where

$$
\begin{aligned}
& J_{i}=\left(\Delta\left(x_{i}\right)-\Pi\left(\Delta\left(x_{i}\right)\right)\right)^{T} \\
& P\left(\Delta\left(x_{i}\right)-\Pi\left(\Delta\left(x_{i}\right)\right)\right), P=P^{T}>0
\end{aligned}
$$

- $\Delta()$ is the function of impact dynamics with state relabeling for calculating post-impact states
- $\omega \sum J_{i}()$ is the walking robust cost for compass gait by evaluating the walking robust cost associated to the set of sampled stepping time.

Generated Optimal Trajectories

- The following results are the optimal trajectories solved using MATLAB and OptimTraj [5] with different weights of the walking robust cost.
- The higher the weight, the closer the nearby states towards the initial condition.

Sampled stepping time: $t_{F} \pm 10 \% t_{F}$

Simulation Result

- Walking simulation for 1000 steps using MATLAB and ode45 with slope variation.
- Time-varying LQR is implemented.

- Test this method with more feasibility constraints (e.g. torque constraint and contact force constraint) and more complicated bipedal robots.

References

[1] M. Posa et al., In JIRR (2014).
[2] Z. Manchester et al., In RSS (2017).
[3] H. Dai et al., In CDC (2012).
[4] B. Griffin et al., In JIRR, (2017).
[5] M. Kelly, A trajectory optimization library for Matlab @ GitHub.

