

MECHANICAL ENGINEERING

TEXAS A&M UNIVERSITY

HUMAN REHABILITATION (HUR) Group

Research Highlights

- Objective: generate <u>a</u> robust walking trajectory under terrain uncertainty.
- A method for compass gait generation which incorporates:
 - 1) Trajectory optimization with **direct** collocation (can be scaled well to high dimensional problems [1,2]).
 - 2) A **robust cost** in optimization to reflect the walking robustness [3].

Walking Robustness

The walking robustness is quantified by calculating the distance between the post-impact state $\Delta(x_i)$ and its projection on the nominal trajectory $\Pi(\Delta(x_i)) [3].$

Main Idea

Evaluate the walking robustness of heel-strike by sampling stepping time near nominal step time t_F !

0.5

(rad/s)

-1.5

-2

 $\dot{\theta}$

A Direct Method of Trajectory Optimization for Compass Bipedal Locomotion under Terrain Uncertainty

Kenneth Yi-wen Chao and Pilwon Hur, Ph.D. kchao@tamu.edu, pilwonhur@tamu.edu fractional http://hurgroup.net

Optimization Formulation

With $x = [x_1, \ldots, x_N]$, $u = [u_1, \ldots, u_N]$ and t_F as free variables, the optimization can be expressed as:

$$\min_{x,u,t_F} \quad J_0(x,u) + \omega \sum_{i=k-d}^{k+d=N} J_i(x_i,u_i)$$

 $\Delta(x_k) = x_1$ s.t.

where

$$J_i = (\Delta(x_i) - \Pi(\Delta(x_i)))^T$$
$$P(\Delta(x_i) - \Pi(\Delta(x_i))), P = P^T > 0$$

 $\Delta()$ is the function of impact dynamics with state relabeling for calculating post-impact states

 $\omega \sum J_i()$ is the walking robust cost for compass gait by evaluating the walking robust cost associated to the set of sampled stepping time.

Generated Optimal Trajectories

The following results are the optimal trajectories solved using MATLAB and OptimTraj [5] with different weights of the walking robust cost. The higher the weight, the closer the nearby states towards the initial condition.

Sampled stepping time: $t_F \pm 10\% t_F$

Simulation Result

Future Works

Test this method with more feasibility constraints (e.g. torque constraint and contact force constraint) and more complicated bipedal robots.

References

 θ (rad)

- M. Posa et al., *In JIRR (2014)*. [1]
- Z. Manchester et al., In RSS (2017). [2]
- H. Dai et al., *In CDC (2012)*. [3]
- B. Griffin et al., In JIRR, (2017). [4]
- _____ [5] M. Kelly, A trajectory optimization library for Matlab @ GitHub.

