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Abstract— Trajectory optimization with direct collocation are
widely used in various bipedal walking studies, from dynamic
simulation in biomechanics to efficient bipedal walking motion
generation with multiple contact domains. Although the latter
has gained popularity, most of the approaches in this field in
general rely on pre-determined contact sequence (domains).
This motivates us to use trajectory optimization through contact
for generating an efficient and human-like walking gait, because
this approach can automatically generate the contact sequence
by solving a nonlinear program (NLP) with complementary
constraints. However, in this approach the initial guess affects
the result significantly, and the direct collocation with Euler
method may not be accurate enough for the system dynamics.
Therefore, we propose a modified framework and constraints
to improve the generated results. We used a zero moment point
(ZMP)-based flat-feet walking gait as an initial guess. We also
show how to add virtual components like springs at ankle joints
to alter the behavior of the resultant walking gait. In addition,
considering the one-sided springs at the passive toe joints of the
bipedal robot AMBER 3, additional complementary constraints
are introduced for a better match of the full dynamics. The
results of our modified approach with different constraint
conditions are presented and discussed.

I. INTRODUCTION

Generating dynamic walking gait of humanoid robots
which is targeting on efficiency, agility and robustness is a
challenging problem. For this motion generation problem,
trajectory optimization is a powerful tool for solving the
locally optimal trajectories for the dynamical systems which
are potentially highly nonlinear. Among various methods in
this field, trajectory optimization with direct collocation has
gained more attention in recent years. In biomechanics, the
dynamic simulation using trajectory optimization is useful
for studying neuromuscular coordination, predicting human
behavior under various conditions [2], [5], or generating
walking gait for lower-limb prosthesis control [16], [10].
On the other hand, there are more and more applications
using trajectory optimization for bipedal locomotion gen-
eration [12], [15], especially for bipedal robot controller
design using Hybrid Zero Dynamics (HZD) scheme [8], [16],
[7]. Although trajectory optimization with direct collocation
works well with HZD-based controller, this approach usually
requires the specification of the contact sequence (or do-
mains/modes) as a priori. This specification can potentially
make the problems much more complicated than needed
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Fig. 1: The human-sized planar bipedal robot AMBER 3
(left). It is 148 cm tall, weights 33.4 kg, with 6 active
degree of freedoms at hip, knee and ankle joints, capable
of performing walking with multiple contact domains (e.g.
walking with foot rolling motion). It has passive toes (right)
with the torsional springs (circled by the bright blue loop).

since combinatorics of the potential contacts need to be
considered.

On the other side of the spectrum, some researchers have
developed approaches that do not require domain knowledge
specific to the target behavior. Mortach et al. proposed the
contact invariant optimization (CIO) [9] used for animations
with simplified dynamic models. By introducing the contact-
invariant cost and multiple optimization phases, this method
optimizes over auxiliary decision variables which specify
when and where the contacts are made, and can generate
complex behaviors such as walking, climbing and handstand.
Posa et al. [11] developed a unified framework termed
trajectory optimization through contact, which has shown its
capability to generate motion for high-dimensional systems
with large number of modes, such as grasp planning, bipedal
robot walking, or running. However, this local method will be
affected largely by the choice of initial guess, and the accu-
racy of the numerical approximation using Euler method. In
our work, for improving the accuracy and efficiency of the al-
gorithm to generate walking gait under the similar optimiza-
tion formulation, we first provide the modified framework
and constraints for improving the numerical properties of
the optimization formulation in Section III. Several schemes
deigned for motion planning with better solution and better
dynamical system description for the passive toes of the
bipedal robot AMBER 3 (Fig. 1) are presented in Section
IV. Results and conclusions are presented in Section V and
Section VI respectively.
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Fig. 2: The schematic of a bipedal robot with a floating base.

II. FULL DYNAMICS AND BIPEDAL LOCOMOTION

A. System Dynamics with Contact Constraints

The dynamics of a rigid body model with a floating base
can be expressed as follows:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JTλ (1)

where q is the generalized coordinate that includes [x, z, θ]T

(Fig. 2), D(q) is the inertia matrix, C(q, q̇) is the Coriolis
matrix, G(q) is the gravity vector, J is the Jacobian matrix
of the contact position φ(q) such that J = ∂φ/∂q, B is the
torque distribution matrix, u is the control input, and λ is the
contact force. Any potential contact point of the system can
be described as φ(q) = [φx(q), φz(q)]

T . φx(q) is tangential
to the contact surface and φz(q) is the normal distance. A
contact is made when φz(q) reaches zero.

For each potential contact point φ(q) with the contact force
λ = [λx, λz] and velocity γ = Jq̇ , [γx, γz], if the sliding
contact is permitted, a set of complementary constraints [11]
can be used to describe the Coulomb friction model:

φz(q), λz, |γx| ≥ 0 (2)
µλz − |λx| ≥ 0 (3)
φz(q)λz = 0 (4)

(µλz − |λx|)|γx| = 0 (5)

where µ is the friction coefficient. On the other hand, if
sliding is not allowed, instead of eq. (5), the constraint eq. (6)
needs to be satisfied:

λz|γx| = 0 (6)

B. Domains of Bipedal Robot Walking

In our setup, the model of AMBER 3 has four potential
contacts: the heels and toes on both feet. The contact
conditions for each foot can be defined as: i) toe-off (φz,toe =
0, φz,heel > 0), ii) heel-contact (φz,toe > 0, φz,heel = 0),
and iii) flat contact (φz,toe = 0, φz,heel = 0). A specific
contact domain in the bipedal robot walking gait will be
determined by the contact conditions of both feet.

C. Trajectory Optimization and Locomotion Generation for
a System with Multiple Domains

A trajectory for a dynamic system can be treated as a
set of state as a function of time x(t) resulting from its
initial condition x(t0) and control u(t). As the name implies,
trajectory optimization is a set of local methods for planning
the optimal trajectory x(t) with u(t), and minimizing the
objective cost over a horizon t ∈ [0, T ].

Among various approaches, trajectory optimization with
direct collocation in general has nicer numerical properties
than the indirect method. Thus, it can be used to solve
complex problems such as a system with multiple contact
domains. For handling this type of problems, most state-of-
the-art techniques assume the contact sequence is known or
specified, and then the contact condition is either inserted ex-
plicitly through constrained dynamics, or implicitly through
dynamics constraints like eq. (1). This approach works well
with HZD schemes, where a set of boundary conditions
between domains (especially the ones with impact maps
based on inelastic collision) need to be satisfied [8], [16],
[7]. However, several potential issues may arise with the
increase of contact points, such as determining the optimal
contact sequence, and the increasing restriction for searching
trajectories with more and more impact maps, which may
rule out some potentially feasible trajectories. Therefore,
the optimization through contact, which treats the contact
sequence as a part of the trajectory becomes a nice resolution
for those issues, will be introduced in next section.

III. TRAJECTORY OPTIMIZATION THROUGH CONTACT
WITH DIRECT COLLOCATION

Inspired by the time stepping method [13] used for forward
simulation, Posa et al. [11] proposed the trajectory optimiza-
tion through contact. The main idea of the time stepping
method is to discretize the system state and control to formu-
late the multi-contact dynamics as a Linear Complementarity
Problem (LCP). In this way, only the contact force acting
over a period will be considered, which eliminates the need
to differentiate between continuous and impulsive forces.
Similarly, using direct collocation with trapezoid method,
the optimization through contact directly optimizes the given
cost function over a set of free variables including feasible
states, control inputs, contact forces, time step and other
slack variables. The general trajectory optimization through
contact can be stated as:

argmin
x=[h,x1,...,xN ,u1,...,uN ,λ1,...,λN ]

gf (xN ) + h

N∑
k=1

g(xk, uk)

(7)
s.t. xmin ≤ x ≤ xmax

fmin ≤ f(x) ≤ fmax

where h is the time step, xk is the discretized state vari-
ables [qk; q̇k]

T at kth time step, gf (·) represents the final
cost, and h

∑
g(·) is the integral cost. {xmin,xmax} and

{fmin, fmax} are the vectors corresponding to the lower
and upper bounds of decision variables and constraints
respectively. Though the direct collocation scheme largely
increases the number of free variables and constraints, the
well-posed nature of the problem as a large sparse Non-
Linear optimization Problem (NLP) (with sparse Jacobian
matrices of the cost function and constraints) allows nonlin-
ear optimization solvers like IPOPT [14], [7] and SNOPT
[6], [11] to solve the NLP efficiently.
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However, despite the concise and unified framework that
can automatically derive the contact sequence by solving
the NLP in eq. (7), there exist several issues. For example,
general walking motion generation usually requires 20 to
50 collocation points for one half gait cycle (i.e. a single
step), where the step size is in the order of 10−2 second.
However, the step size required for time stepping method
with more accurate simulation result is in millisecond [13].
Therefore, the time step size h may not be small enough
for accurate dynamic simulation. As a result, a transcription
method with higher accuracy, such as Runge-Kutta method or
Hermite-Simpson method should be considered to decrease
the integral error. In addition, the initial guess to this local
method [11] and the related scheme for relaxation of the
complementary constraints also need to be carefully handled
for improving the optimization performance and the quality
of the generated gait. In this section, we will focus on
the transcription using Hermite-Simpson method with the
corresponding constraint setup, followed by the introduction
of the cost function and other important constraints in our
modified optimization framework. The related constraint
relaxation scheme and other adjustments will be introduced
in the next section.

A. General Setup

For the discretization of all state variables, we set the time
step as h = T/N , where T > 0 is the duration of a half
gait cycle and N = (2Nc + 1) is the number of collocation
nodes. To use the Hermite-Simpson method to describe the
relationship between the adjacent state variables, the number
of cardinal nodes Nc needs to be selected first. In this case,
the odd points (x1, x3, . . . , x2Nc+1) are the cardinal nodes
where the time duration between any adjacent cardinal points
can be arbitrarily chosen. For simplicity, the fixed time step
h is used in our framework, so the duration between two
adjacent cardinal points is 2h. On the other hand, the even
points called interior points (x2, x4, . . . , x2Nc

) need to be
placed at the center of two adjacent cardinal nodes.

B. Transcription for Direct Collocation Using Hermite-
Simpson Method

In our modified framework, the Hermite-Simpson method
is chosen for improving the accuracy of numerical ap-
proximation for kinematics and dynamics [7], [12]. The
constraints of this method can be expressed as:

xk −
1

2
(xk+1 + xk−1)−

1

8
h(ẋk−1 − ẋk+1) = 0 (8)

xk+1 − xk−1 −
1

6
h(ẋk−1 + 4ẋk + ẋk+1) = 0 (9)

The physical meaning of the constraints above is that the kth
state variable and its time derivative xk and ẋk on the interior
node (approximated as a cubic spline) should match the
state variables and its time derivative evaluated through the
system’s kinematic and dynamic equations explicitly. Note
for this Hermite-Simpson method with local compression [3],
only the states of cardinal nodes belong to the free variables,

since the state and its derivative of the interior node can be
explicitly calculated based on the constraints stated above.
This method is referred as the compressed form of Hermite-
Simpson method [3].

C. The Implicit Constraint Expression with Extra NLP Vari-
ables

As per the previously mentioned explicit calculation (the
acceleration q̈i = f(qi, q̇i) from the system dynamics), the
state on the interior node in eqs. (8) and (9) is coupled
with the states on adjacent grid points. In addition, this
calculation requires the inverse of the inertia matrix. Though
the compressed form of Hermite-Simpson method using less
decision variables (because the states of internal nodes are
functions of cardinal nodes), it can limit the sparsity of
the Jacobian matrix of constraints. To improve the sparsity,
extra NLP variables, such as q̈k of the cardinal points and
the interior points’ states and accelerations (xi and q̈i) is
introduced so that the set of free variables in eq. (7) becomes:

x = [h, x1, . . . , xN , q̈1, . . . , q̈N , u1, . . . , uN , λ1, . . . , λN ]

On the other hand, instead of explicitly calculating the q̈k
for all nodes with the inverse inertial matrix, the dynamic
constraints in eq. (1) for each time step are inserted. Please
refer to [3] for Hermite-Simpson (Separated) method (HSS)
in Chapter 4 for further details and discussions.

D. Cost Functions and Constraints

Similar to the previous works using trajectory optimization
with direct collocation [7], [11], [12], the mechanical cost
of transport (COT) is used with an additional sum of torque
squared with a small scaler factor ω as shown:

cost(x) =
1

mgd

N∑
k=1

∑
i

|uk,iq̇k,i|+ ω

N∑
k=1

uTk uk (10)

where mg is the system total weight, and d is the total
traveling distance. Empirically, the sum of torque squared
can help to improve the generated gait. Except for the
kinematic and dynamic constraints (eqs. (1), (8) and (9)),
other important constraints are summarized here:
Contact Constraint. Depending on whether the sliding con-
tact is allowed or not, either eqs. (2) to (5) (referred as SACC:
sliding allowed contact constraints) or eqs. (2) to (4) and (6)
(referred as NSCC: non-sliding contact constraints) need to
be satisfied for all cardinal and interior points.
Periodic Constraints. To generate the nominal walking gait,
the periodic constraints are expressed as shown:

q1 − RqN = 0 (11)
q̇1 − Rq̇N = 0 (12)

ẋ1,COM = ẋN,COM (13)
z1,COM = zN,COM (14)
ż1,COM = żN,COM (15)

xN,COM ≥ x1,COM + dmin (16)

where R is the relabeling matrix which switches the state
variables at the joints on the left leg to the right or vice
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versa, and dmin is the minimum moving distance of xCOM .
Contact Constraint of Stance Toe. Since the duration of toe
contact is slightly longer (about 55% for a full gait cycle)
than one half gait cycle in the human walking gait analysis,
the following constraint can further simplify the optimization
without altering the objective for human-like walking gait
generation, i.e. the stance toe (stoe) is constrained as:

φstoe(qk) = 0 (17)

for k = [1, . . . , N ]. This constraint can also help to elimi-
nate some undesirable gaits, i.e. the walking motion which
includes the hopping in the half gait cycle.

IV. RUNNING THE OPTIMIZATION TOWARDS
GENERATING HUMAN-LIKE WALKING GAIT

With the modified framework of the trajectory optimiza-
tion through contact, we improve the numerical approxi-
mation accuracy, the sparsity of the Jacobian matrix about
kinematic and dynamic constraints. In addition, the quality of
the generated gait is improved by introducing the additional
terms in cost function. However, sometimes it is still tricky
to derive a high-quality gait by solving the NLP just a
few times. There are several potential reasons for that. First
of all, the choice of the initial guess can lead to different
feasible gaits that satisfy all the constraints as mentioned in
[11]. Naturally, more human-like initial guesses or the cost
function for fitting human data may lead to a more desirable
result. But, such approaches would be deliberatively guiding
the optimization towards human-like gait. Our objective, on
the other hand, is to naturally generate a human-like gait
through trajectory optimization with general constraints and
initial guess that is easy to generate. We believe that such an
approach would be applicable for prosthesis, orthosis, or ex-
oskeletons, because the produced results would be favorable
to both the robotic systems and the humans interacting with
them. Second, dependent on sliding contact condition, the
generated behavior from the same initial condition may vary
a lot because the different contact constraints have differ-
ent numerical properties. Last but not least, since humans
inherently have more passive components compared to a
pure rigid-body model, it may be helpful to introduce some
virtual components to slightly alter the generated gait. In the
following subsections, the series of adjustments and schemes
for improving the generated gait will be introduced.

A. Choice of the Initial Guess

As per our objective, the ZMP-based flat walking gait is
chosen as the initial guess [4]. The reasons for this choice
are: i) The ZMP-based method for walking motion genera-
tion is widely-used. ii) With the simple flat-contact condition
and two domains (i.e. the single support and double support
phases), it is relatively easy to derive a dynamically feasible
trajectory using constrained dynamics. iii) The generation
of desired trajectory for ZMP-based walking (e.g., ZMP
trajectory, torso angle) is straightforward.

B. Choice of Contact Constraints

In our implementation with the ZMP-based walking gait
as the initial guess, the generated gait with SACC and NSCC
are quite different, as shown in the next section. For the gait
with SACC, the foot clearance of the swing foot is relatively
small; the foot is almost sliding along the ground until it
makes a step. On the other hand, the gait with NSCC behave
more like a passive walker, which has a slightly larger sway-
up motion before the heel-strike.

C. Virtual Springs on Ankles for Inducing Heel-strike Motion

For the resulting gaits that have no obvious heel-strike
even with a larger dmin in eq. (16), one potential solution
is to add virtual passive components to the system. Here we
choose to add a torsional spring with a small stiffness k to
the ankle joint to emulate the effect of the human Achilles
tendon at the ankle (which prevents the foot from dropping
even when the ankle is relaxed). The equation of motion then
becomes:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JTλ− kBBkq (18)

where BBk is the spring torque distribution matrix for
assigning the spring torques to the torque equations of ankle
joints. With this setup, the resultant torque applied to the
system becomes u − kBkq. For mitigating the effect of
introducing virtual elastic components, the second term in
the cost function eq. (10) can be modified as follows:

ω

N∑
k=1

(uk − kBkqk)T (uk − kBkqk) (19)

D. Contact Constraints for One-sided Springs on Toes

For the bipedal robot AMBER 3, a set of torsional springs
are attached on the passive toe joints (Fig. 1). The mechanical
joint limit is designed that the torsional spring will activate
only when the foot is in toe-off condition. Therefore it
can be approximated as a contact point which has a one-
sided torsional spring. An additional set of complementary
constraints for the toe with one-sided spring then can be
expressed as follows:

ktoeθtoe = (T1 + T2)− T− (20)
(T1 + T2)T

− = 0 (21)
T1T2 = 0 (22)

φz,toeT1 = 0 (23)
φz,toe, T1, T2, T

− ≥ 0 (24)

where the ktoe is the stiffness, T1, T2, and T− are slack
variables for the one-sided spring, where the real torque
applied to the system through the active spring is the variable
T1. Under this setup, the equation of motion becomes:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ JTλ− JTθ,toeT1 (25)

where the Jθ,toe is the Jacobian matrix of the toe orientation.
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(a) The trajectories of the hip joint.
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(b) The trajectories of the knee joint.
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(c) The trajectories of the ankle joint.

Fig. 3: The angular trajectory comparison between human data, gait SACC and gait SACC with the kinematic optimization.

E. Relaxations on the Complementary Constraints
For solving this problem using SNOPT with sparse se-

quential quadratic programming, it has been reported that it
is practically useful to temporarily relax the complementary
constraints [11] as follows:

M(x), N(x) ≥ 0 (26)
M(x)N(x) = ε (27)

where ε is a small nonnegative constant. On the other hand,
we also found when using IPOPT (based on a primal-dual
interior point method) to solve this type of the problem,
the relaxation is also required. Without the relaxation, the
primal-dual barrier approach will drive M(x), N(x) away
from the boundary and leads to the worse local solution and
convergence of the optimization problem. Since ε is sensitive
to the optimization problem, we empirically used a simple
grid search in the range of 10−3 to 10−1, with a smaller
maximum iteration number of the solver for quickly choosing
a ε for a better start.

F. A Kinematic-based Trajectory Optimization for Increasing
the Foot Clearance

Another observation from the result of the optimization
through contact is that the ground clearance of the swing
foot can be very small, probably caused by the minimization
of the objective function which contains cost of transport.
In general it should be improved by inserting the contact
constraint in the form of φz(x) ≥ f(x), in addition to
the constraint in eq. (2). However, practically it might
easily be compromised by the relaxation of complementary
constraints. For increasing the foot clearance effectively
with minimal effect on the original gait, a kinematic-based
trajectory optimization for the swing leg trajectory is adopted
as a post processing:

argmin
x=[x1,...,xN ]swing

∑
(qk − qk,ref )T (qk − qk,ref ) (28)

s.t. φz,toe ≥ f(φx,toe)
φz,heel ≥ f(φx,heel)
kinematic constraints in eqs. (8) and (9)

where qk,ref is the joint trajectory derived from optimization
through contact, and f(φx) is a normal distribution function
of the contact point’s horizontal position.

V. OPTIMIZATION RESULTS AND RELATED
COMPARISONS

The formulated optimization with different constraints
were solved using IPOPT with the linear solver ma57. De-
pending on the relaxation and the initial guess, the required
computation time varied from 30 seconds to 10 minutes.
For the common parameter setup applied for all the cases,
ω = 10−3, k = 10Nm/rad, dmin = 0.5m. Except for
the ZMP-based walking (ZMP) as the initial guess, other
generated gaits for comparison include: the optimization
using SACC (SACC), the optimization using NSCC (NSCC),
and the optimization with one-sided spring constraints and
NSCC (OSS) (as shown in Fig 4 to Fig. 6). The main
quantities for comparison are listed in TABLE I.

TABLE I: The list of the modified costs, stride lengths
and double support percentage values for initial guess, and
generated gaits with different contact constraints.

Gait type ZMP SACC NSCC OSS
Cost 0.577 0.048 0.049 2.664
Stride
length 0.2m 1.10m 1.0m 1.0m

Double
support
percentage

33.33% 31.37% 35.48% 35.48%
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Fig. 4: The walking tile of the generated gait with SACC.
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Fig. 5: The walking tile of the generated with NSCC.
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Fig. 6: The walking tile of the generated gait with OSS.

The generated gaits with NSCC and SACC show that
these two types of constraints can generate different gait
characteristics. Thus the user can interchangeably switch
among different constraints during the optimization process
for getting a better result. In Fig 3, the human gait, the gait
with SACC before and after the kinematic optimization for
increasing the swing foot clearance are compared. Although
the discrepancies still exist, patterns of the gait with SACC
and kinematic optimization are closer to the human ones.
The differences observed in the ankle trajectories are larger
than those of the knee and hip, but the concluding stage of
the ankle trajectory with SACC and kinematic optimization
is similar to the initial stage of the human ankle trajectory.
Further adjustments of the introduced schemes are required
to improve the phase difference here.

For the gait with one-sided spring constraints, although the
constraints helps to decrease the toe-off angle (Fig. 6), the
minimum cost was still quite high compared with the other
gaits since there were more complementary constraints need
to be satisfied or relaxed at the same time.

VI. CONCLUSIONS AND FUTURE WORK

With the modified framework, a series of gaits with
different constraints are generated. To make the optimization
with complementary constraints more tractable (e.g. for one-
sided spring), other solvers using SQP method should also

be considered. Further adjustment of the parameters for the
provided schemes is also required for more natural gait
generation. On the other hand, further validations including
more simulations and physical implementations are still
required for testing the stability and robustness of the gait.
Currently, the testing experiment is being undergone [1], and
the artifacts from the support mechanism and treadmill will
be resolved. We also plan to use this method for generating
the trajectories for lower-limb prosthesis and exoskeleton.
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