Unification of Locomotion Pattern Generation and Control Lyapunov Function-Based Quadratic Programs

> Kenneth Chao, Matthew Powell, Aaron Ames and Pilwon Hur 07/07/2016

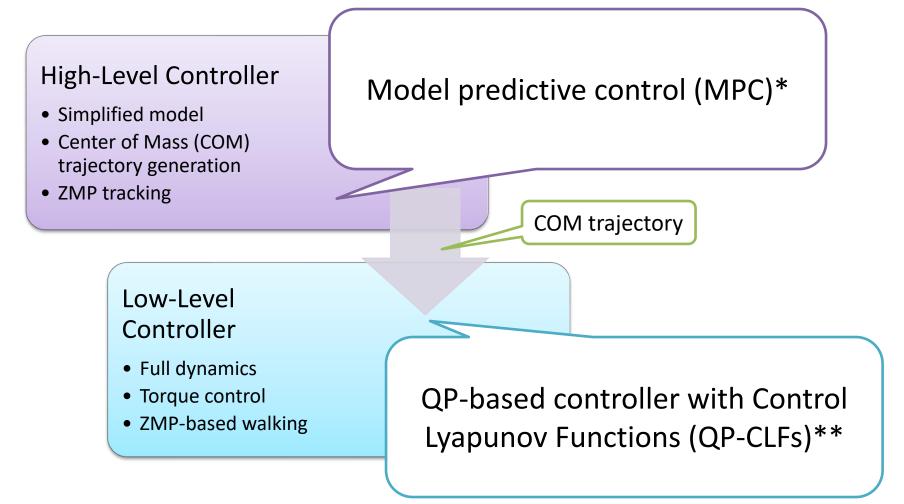
ACC 2016

Introduction: Quadratic Program (QP)based Control for bipedal walking

• In our application, QPs with affine constraints are solvable in real-time

 The structure of quadratic program is well suited to handle a diverse set of problems in robotic walking

QP-based Controller Examples for ZMP-based Walking



*P. B. Wieber, Int. Conf. Humanoid Robot, 2006.

** A. D. Ames and M. Powell, in *Control of Cyber-Physical Systems*, vol. 449, Springer.

Walking Control Problem Breakdown

Reasons:

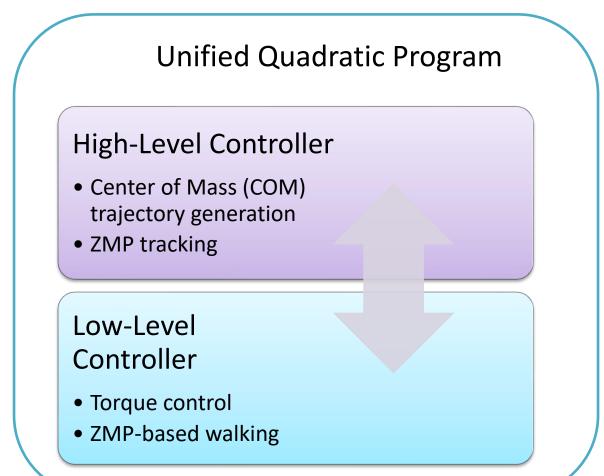
- The complexity of the original walking control problem is high (e.g. control the actuator torque for tracking the desired ZMP)
- Real-time controller development

Cost behind task breakdown and cascade structure:

 Issues from the controller setup for both lowlevel control and high-level control

 ^{*}P. B. Wieber, Int. Conf. Humanoid Robot, 2006.
 ** A. D. Ames and M. Powell, in *Control of Cyber-Physical Systems*, vol. 449, Springer.

Main Idea: A Unified Controller through Single Quadratic Program



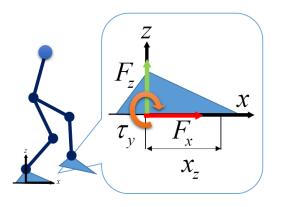
Outline

- 1) Bipedal Walking Control with Quadratic Program (QP) and ZMP Constraint
 - a. ZMP and ZMP constraint
 - b. Low-level control ZMP-based walking control
 - c. High-level control COM pattern generation
- 2) Unification of Walking Control and Pattern Generation
 - a. QP setups of low-level and high-level controller
 - b. Framework of the unified quadratic program
- 3) Result, Conclusion and Future work

Zero-Moment Point and Ground Reaction Forces

• Zero-moment point (ZMP), or equivalently center of pressure (COP), is the average of the pressure distribution:

$$x_z = \frac{\int x F_z(x) dx}{\int F_z(x) dx} \qquad x_z : ZMI$$



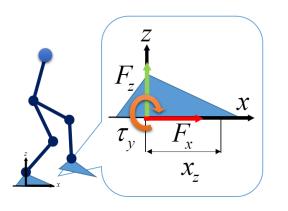
ACC 2016

Zero-Moment Point and Ground Reaction Forces

• ZMP can be expressed with ground reaction forces (GRFs)

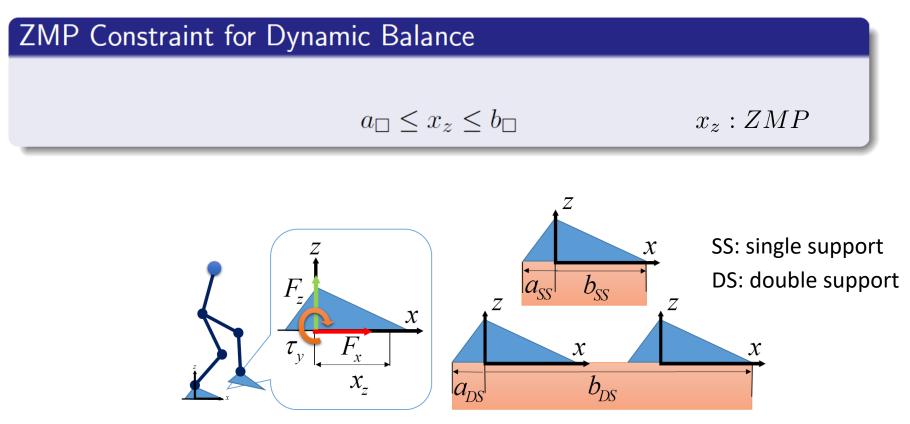
$$x_z = -\frac{\tau_y}{F_z}$$

$$x_z : ZMP$$



ZMP Constraint for Dynamic Balance

The legged system with footpad will not get tipping if its ZMP is inside its base of support (BOS) (or support polygon):

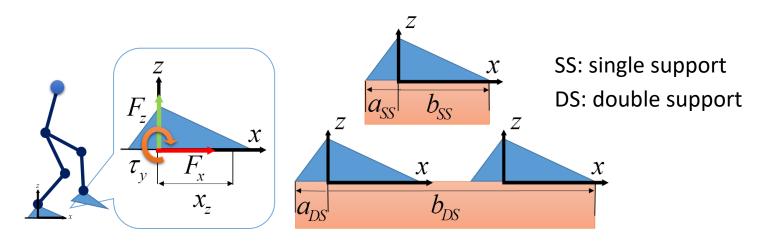


ZMP Constraint for Dynamic Balance

The legged system with footpad will not get tipping if its ZMP is inside its base of support (BOS) (or support polygon):

ZMP Constraint for Dynamic Balance

$$a_{\Box} \le -\tau_y / F_z \le b_{\Box}$$



ZMP Constraints and QP-based Controllers

Foot placement from decision maker

High-Level Controller

- Center of Mass (COM) trajectory generation
- ZMP tracking

- Torque control
- ZMP-based walking

Programs

with

ZMP Constraints

Nonlinear Robot Control System with ZMP Constraints

QP-based controller with Rapidly Exponentially Stabilizing Control Lyapunov Function (RES-CLF)

- Control objectives (Control outputs/Virtual constraints) are given: For ZMP-based walking
- Nonlinear full constrained dynamics

$$D(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = \begin{bmatrix} B & J_h^T \end{bmatrix} \begin{bmatrix} u \\ F \end{bmatrix} \triangleq \bar{B}(q)\bar{u}$$

u : the set of actuator torques F : GRFs

• Requirement of constraints: Functions are affine in \bar{u}

Low-level controller

Nonlinear Robot Control System with ZMP Constraints

Formulation of QP-based controller with RES-CLF:

$$\bar{u}^* = \underset{u}{\operatorname{argmin}} \qquad \bar{u}^T H_{CLF} \bar{u} + f_{CLF}^T \bar{u}$$

s.t. $\dot{V}_{\varepsilon}(x) \leq -\varepsilon V_{\varepsilon}(x) \qquad V_{\varepsilon}(x) : \text{RES-CLF}$
 $-bF_z \leq \tau_y \leq -aF_z \qquad x = [q, \dot{q}]^T$

Remarks

- Guaranteed *instantaneous* dynamic balance
- Guaranteed Lyapunov stability
- Potential issue

Low-level controller

Nonlinear Robot Control System with ZMP Constraints

Formulation of QP-based controller with RES-CLF:

$$\bar{u}^{*} = \underset{u}{\operatorname{argmin}} \qquad \bar{u}^{T} H_{CLF} \bar{u} + j$$
s.t. $\dot{V}_{\varepsilon}(x) \leq -\varepsilon V$
 $-bF_{z} \leq \tau_{y} \leq$

$$\frac{1}{2} \sum_{i=1}^{At \text{ next time step...}} \sum_{i=1}^{i} \sum_{j=1}^{i} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_$$

Remarks

- Guaranteed *instantaneous* dynamic balance
- Guaranteed Lyapunov stability
- Potential issue

Low-level controller

ZMP

Linear Inverted Pendulum Model for COM Trajectory Generation

Model Predictive Control (MPC) with Linear Inverted Pendulum (LIP) Model

- Objective: COM Trajectory Generation for tracking desired ZMP
- Equation of motion of LIP Model:

$$\ddot{x}_c = \frac{g}{z_0}(x_c - x_z) \triangleq \omega^2(x_c - x_z)$$

g: Gravity constant $x_z: ZMP$ $x_c: COM$ $z_0: Constant COM height$

Г

• Building block: Discretized state-space equation

$$x_{t+1} = \begin{bmatrix} 1 & \Delta T & 0 \\ \omega^2 \Delta T & 1 & -\omega^2 \Delta T \\ 0 & 0 & 1 \end{bmatrix} x_t + \begin{bmatrix} 0 \\ 0 \\ \Delta T \end{bmatrix} u_t \triangleq A_t x_t + B_t u_t \qquad \begin{aligned} x_t &= \begin{bmatrix} x_{ct} & x_{ct} & x_{zt} \end{bmatrix} \\ u_t &= \dot{z}_t \\ \Delta T &: \text{Sampling time} \end{aligned}$$

High-level controller

*B. J. Stephens et. al., Int. Conf. Humanoid Robot., 2010.

15

ъT

Linear Inverted Pendulum Model for COM Trajectory Generation

Model Predictive Control (MPC) with Linear Inverted Pendulum (LIP) Model

 Objective: COM Trajectory Generation for tracking desired ZMP Equation of motion of LIP Model:

$$\ddot{x}_c = \frac{g}{z_0}(x_c - x_z) \triangleq \omega^2(x_c - x_z)$$

Open-loop predicted sequence for next N time-step (the horizon):

$$\bar{X} = \bar{A}X_{t_0} + \bar{B}\bar{U} \qquad \qquad X = [x_{t+1} \dots x_{t+N}]^T$$

$$\bar{A} = \begin{bmatrix} A_t & A^2_t \dots & A^{N-1}_t & A^N_t \end{bmatrix}^T \qquad \qquad \bar{U} = \begin{bmatrix} u_{t+1} \dots & u_{t+N} \end{bmatrix}^T \\ \bar{U} = \begin{bmatrix} u_{t+1} \dots & u_{t+N} \end{bmatrix}^T \qquad \qquad X_{t0} = \begin{bmatrix} x_{t_0} \dots & x_{t_0} \end{bmatrix}^T \\ \bar{B} = \begin{bmatrix} B_t & 0 \dots \dots & 0 \\ A_t B_t & B_t & 0 \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_t^{N-2}B_t & A_t^{N-3}B_t \dots & B_t & 0 \\ A_t^{N-1}B_t & A_t^{N-2}B_t \dots & A_t B_t & B_t \end{bmatrix}$$

ACC 2016

*B. J. Stephens et. al., Int. Conf. Humanoid Robot., 2010.

 $\neg T$

Linear Inverted Pendulum Model for COM Trajectory Generation

Model Predictive Control (MPC) with LIP Model QP formulation:

$$\bar{U}^* = \underset{\bar{U}}{\operatorname{argmin}} \qquad \bar{U}^T H_p \bar{U} + f_p^T \bar{U} \\
\text{s.t.} \qquad A_{iq,p} \bar{U} \le b_{iq,p}$$

Remarks

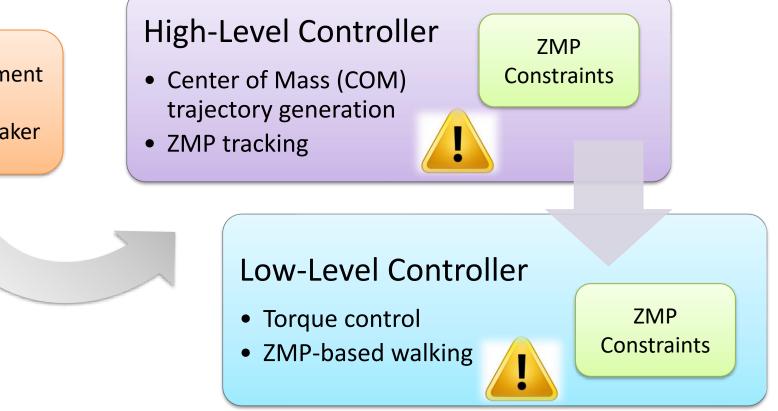
- Guaranteed dynamic balance over the horizon
- Predictive ability improves the control performance
- Potential Issues

High-level controller

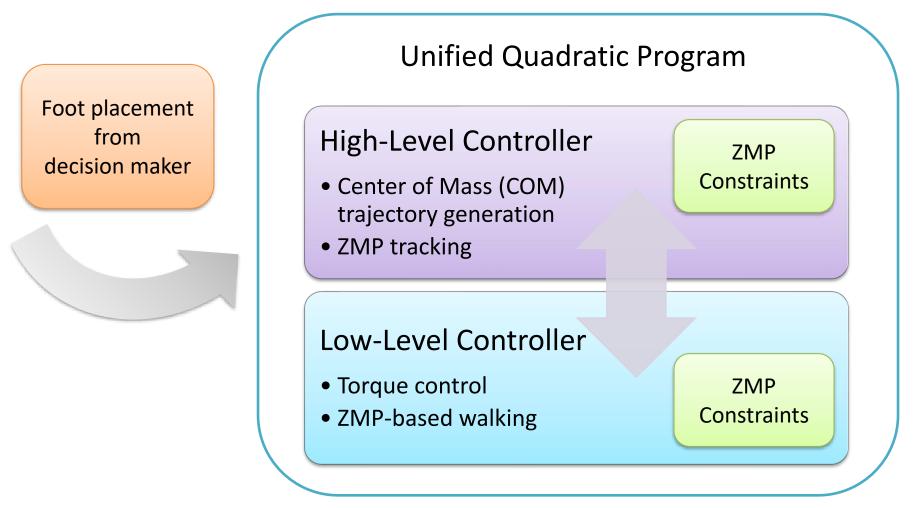
*B. J. Stephens et. al., Int. Conf. Humanoid Robot., 2010.

Conventional Setup: Cascade Control

Foot placement from decision maker



Main Approach: A Unified Controller through Quadratic Program



Outline

- 1) Bipedal Walking Control with Quadratic Program (QP) and ZMP Constraint
 - a. ZMP and ZMP constraint
 - b. Low-level control ZMP-based walking control
 - c. High-level control COM pattern generation
- 2) Unification of Walking Control and Pattern Generation
 - a. QP setups of low-level and high-level controller
 - b. Framework of the unified quadratic program
- 3) Results and Future work

The Setup for CLF-QP: The Construction of RES-CLF

General nonlinear system form:

 $\dot{x} = f(x) + g(x) \bar{u}$

Control outputs:

- Swing foot position and orientation, torso angle
- Center of mass position x_c

$$y(q) \triangleq y_a(q) - y_d(t) \quad \Longrightarrow \quad y \to 0$$

Input/output relation

$$\ddot{y} = L_f^2 y(x) + L_f L_g y(x) \bar{u} + \ddot{y}_d \triangleq L_f + \bar{A}\bar{u} + \ddot{y}_d$$

Desired output dynamics by feedback linearization

Dynamics of the linearized system

$$\dot{\eta} = F\eta + G\mu \qquad \qquad \eta = [y, \dot{y}]^T$$

RES - Control Lyapunov Function $V_{\varepsilon}(\eta) = \eta^T P_{\varepsilon} \eta$ $P_{\varepsilon} = \begin{bmatrix} \varepsilon I & 0 \\ 0 & I \end{bmatrix} P \begin{bmatrix} \varepsilon I & 0 \\ 0 & I \end{bmatrix}$

 $F^T P + PF - PGG^T P + Q = 0,$ where $Q = Q^T > 0, P = P^T > 0$

RES-CLF Constraint with Relaxation:

$$\dot{V}_{\varepsilon}(\eta) = L_f V_{\varepsilon}(\eta) + L_g V_{\varepsilon}(\eta) \mu \le -\varepsilon V_{\varepsilon}(\eta) + \delta$$

Low-level controller

*A. D. Ames et.al ., IEEE Trans. Automat. Contr., 2014.

ACC 2016

The Setup for CLF-QP: The Construction of RES-CLF

General nonlinear system form:

 $\dot{x} = f(x) + g(x)\bar{u}$

Control outputs:

- Swing foot position and orientation, torso angle
- Center of mass position x_c

$$y(q) \triangleq y_a(q) - y_d(t) \quad \Longrightarrow \quad y \to 0$$

Input/output relation

$$\ddot{y} = L_f^2 y(x) + L_f L_g y(x) \bar{u} + \ddot{y}_d \triangleq L_f + \bar{A}\bar{u} + \ddot{y}_d$$

Desired output dynamics by feedback linearization

Dynamics of the linearized system

$$\dot{\eta} = F\eta + G\mu \qquad \qquad \eta = [y, \dot{y}]^T$$

RES - Control Lyapunov Function $V_{\varepsilon}(\eta) = \eta^T P_{\varepsilon} \eta$ $P_{\varepsilon} = \begin{bmatrix} \varepsilon I & 0 \\ 0 & I \end{bmatrix} P \begin{bmatrix} \varepsilon I & 0 \\ 0 & I \end{bmatrix}$

 $F^T P + PF - PGG^T P + Q = 0,$ where $Q = Q^T > 0, P = P^T > 0$

RES-CLF Constraint with Relaxation:

$$\dot{V}_{\varepsilon}(\eta) = L_f V_{\varepsilon}(\eta) + L_g V_{\varepsilon}(\eta) \mu \le -\varepsilon V_{\varepsilon}(\eta) + \delta$$

Low-level controller

The Setup for CLF-QP: The Construction of RES-CLF

General nonlinear system form:

 $\dot{x} = f(x) + g(x)\bar{u}$

Control outputs:

- Swing foot position and orientation, torso angle
- Center of mass position x_c

$$y(q) \triangleq y_a(q) - y_d(t) \quad \Longrightarrow \quad y \to 0$$

Input/output relation

$$\ddot{y} = L_f^2 y(x) + L_f L_g y(x) \bar{u} + \ddot{y}_d \triangleq L_f + \bar{A}\bar{u} + \ddot{y}_d$$

Desired output dynamics by feedback linearization

Dynamics of the linearized system

$$\dot{\eta} = F\eta + G\mu \qquad \qquad \eta = [y, \dot{y}]^T$$

RES - Control Lyapunov Function $V_{\varepsilon}(\eta) = \eta^T P_{\varepsilon} \eta$ $P_{\varepsilon} = \begin{bmatrix} \varepsilon I & 0 \\ 0 & I \end{bmatrix} P \begin{bmatrix} \varepsilon I & 0 \\ 0 & I \end{bmatrix}$

 $F^{T}P + PF - PGG^{T}P + Q = 0,$ where $Q = Q^{T} > 0, P = P^{T} > 0$

RES-CLF Constraint with Relaxation:

$$\dot{V}_{\varepsilon}(\eta) = L_f V_{\varepsilon}(\eta) + L_g V_{\varepsilon}(\eta) \mu \leq -\varepsilon V_{\varepsilon}(\eta) + \delta$$

Low-level controller

*A. D. Ames et.al ., IEEE Trans. Automat. Contr., 2014.

ACC 2016

The Setup for CLF-QP: The QP Formulation

Cost function: Minimize μ and panelize δ

Important constraints:

- ZMP constraint
- CLF constraint
- torque constraint
- normal force constraint

 $a_{\Box} \leq -\tau_y / F_z \leq b_{\Box}$ $\dot{V}_{\varepsilon}(\eta) = L_f V_{\varepsilon}(\eta) + L_g V_{\varepsilon}(\eta) \mu \leq -\varepsilon V_{\varepsilon}(\eta) + \delta$ $u_{min} \leq u \leq u_{max}$

$$F_z \ge 0$$

$$\bar{u}^* = \underset{\bar{u},\delta}{\operatorname{argmin}} \qquad \bar{u}^T H_{CLF} \bar{u} + f_{CLF}^T \bar{u} + p\delta^2$$

s.t.
$$A_{iq,CLF} \begin{bmatrix} \bar{u} \\ \delta \end{bmatrix} \leq b_{iq,CLF}$$
$$A_{eq,CLF} \begin{bmatrix} \bar{u} \\ \delta \end{bmatrix} = b_{eq,CLF}$$

CLF-QP:

Expression of COM acceleration via Lie derivative

$$\ddot{x}_c = L_f^2 x_c + L_f L_g x_c \bar{u}$$

Low-level controller

The Setup for MPC-QP: The ZMP Constraint

General setup:

$$\bar{X} = \bar{A}X_{t_0} + \bar{B}\bar{U}$$

$$\bar{X}_z = \bar{A}_{zmp}\bar{X}_{t_0} + \bar{B}_{zmp}\bar{U}$$

$$\bar{X}_c = \bar{A}_{com}\bar{X}_{t_0} + \bar{B}_{com}\bar{U}$$

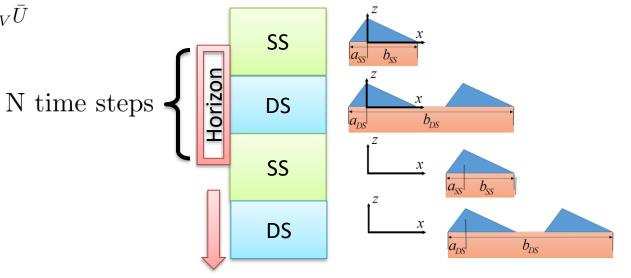
$$\bar{X}_c = \bar{A}_{comV}\bar{X}_{t_0} + \bar{B}_{comV}\bar{U}$$

Horizon computation

- Horizon Length $N = N_{SS} + N_{DS}$

ZMP constraint \bar{a}

 $\bar{a} \le \bar{X}_z \le \bar{b}$



High-level controller

The Setup for MPC-QP: The ZMP Constraint

General setup:

$$\bar{X} = \bar{A}X_{t_0} + \bar{B}\bar{U}$$

$$\bar{X}_z = \bar{A}_{zmp}\bar{X}_{t_0} + \bar{B}_{zmp}\bar{U}$$

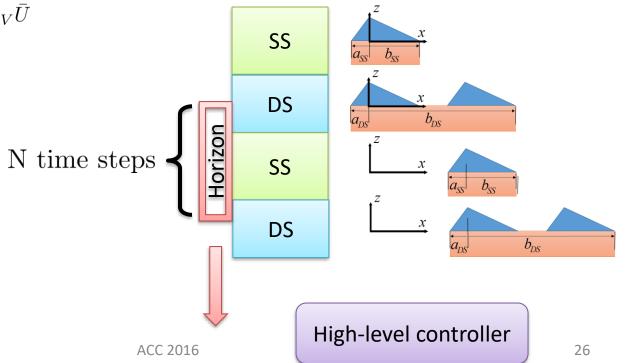
$$\bar{X}_c = \bar{A}_{com}\bar{X}_{t_0} + \bar{B}_{com}\bar{U}$$

$$\bar{X}_c = \bar{A}_{comV}\bar{X}_{t_0} + \bar{B}_{comV}\bar{U}$$

Horizon computation

- Horizon Length $N = N_{SS} + N_{DS}$

ZMP constraint $\bar{a} \leq \bar{X}_z \leq \bar{b}$



The Setup for MPC-QP: The QP Formulation

Cost function:

$$\omega_1 \bar{U}^T \bar{U} + \omega_2 |\bar{X}_z - \bar{X}_z^{goal}|^2$$

Important constraints:

- ZMP constraint
- Terminal constraints

$$\bar{a} \leq \bar{X}_z \leq \bar{b}$$
$$x_{c_{t_0+N}} = x_c^{goal}$$
$$\dot{x}_{c_{t_0+N}} = \dot{x}_c^{goal}$$

 $\frac{1}{2}\bar{U}^TH_n\bar{U}+f_n^T\bar{U}$

MPC-QP:

argmin

$$\bar{U}^*$$

s.t.
 $A_{eq,p}\bar{U} = b_{eq,p}$
 $A_{iq,p}\bar{U} \le b_{iq,p}$

Equation of motion of LIP model

 \overline{U}^*

$$\ddot{x}_c = \frac{g}{z_0}(x_c - x_z) \triangleq \omega^2(x_c - x_z)$$

ACC 2016

High-level controller

The Main Result: The Unified Quadratic Program

$$\begin{aligned} \underset{\bar{u}^*,\bar{U}^*,\delta^*}{\operatorname{argmin}} \frac{1}{2} \begin{bmatrix} \bar{u} \\ \bar{U} \\ \delta \end{bmatrix}^T \begin{bmatrix} H_{CLF} & 0 & 0 \\ 0 & H_p & 0 \\ 0 & 0 & p \end{bmatrix} \begin{bmatrix} \bar{u} \\ \bar{U} \\ \delta \end{bmatrix} + \begin{bmatrix} f_{CLF} \\ f_p \\ 0 \end{bmatrix}^T \begin{bmatrix} \bar{u} \\ \bar{U} \\ \delta \end{bmatrix} \\ \text{s.t.} \quad \begin{bmatrix} A_{eq,CLF} & 0 & 0 \\ 0 & A_{eq,p} & 0 \end{bmatrix} \begin{bmatrix} \bar{u} \\ \bar{U} \\ \delta \end{bmatrix} = \begin{bmatrix} b_{eq,CLF} \\ b_{eq,p} \end{bmatrix} \\ \begin{bmatrix} A_{iq,CLF} & 0 & -1 \\ 0 & A_{iq,p} & 0 \end{bmatrix} \begin{bmatrix} \bar{u} \\ \bar{U} \\ \delta \end{bmatrix} \leq \begin{bmatrix} b_{iq,CLF} \\ b_{iq,p} \end{bmatrix} \\ (L_f^2 x_c + L_f L_g x_c \bar{u}) \frac{z_0}{g} - x_c = -x_z \end{aligned}$$

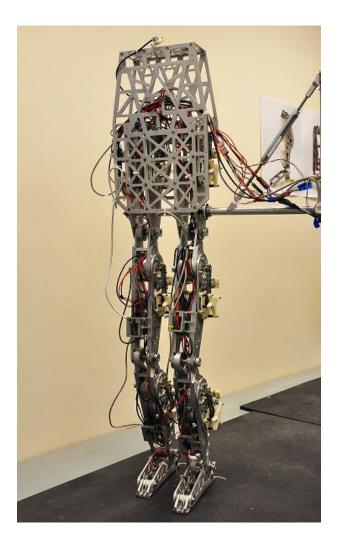
The Main Result: The Unified Quadratic Program

Results

- Planer Bipedal Robot Amber 3
 - Height: 1.45 m
 - Weight: 33.4 Kg
 - 7-link, 6 DOFs

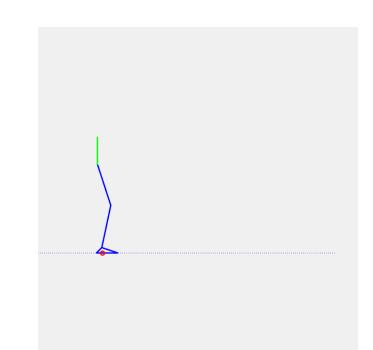
• Walking and Controller

Parameter	Value	Parameter	Value
T_{SS}	2 s	T_{DS}	1 s
MPC sampling time ΔT	0.1 s	Length of MPC horizon	3 s
L_{step}	10 cm	Stride Height	5 cm



Adjustments for Unified QP

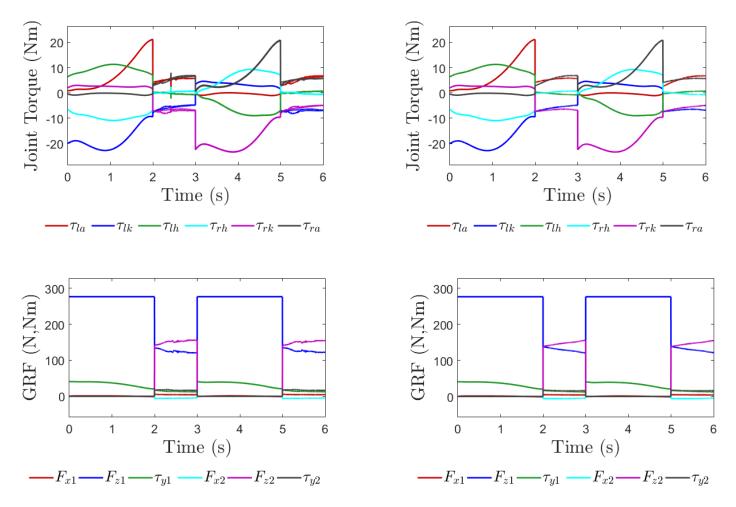
- COM was removed from the control outputs in CLF-QP
- The feedback of postimpact COM velocity to MPC-QP was set to zero to enforce the COM planned as free of impact
- Terminal constraints of COM and COM velocity in MPC-QP were removed



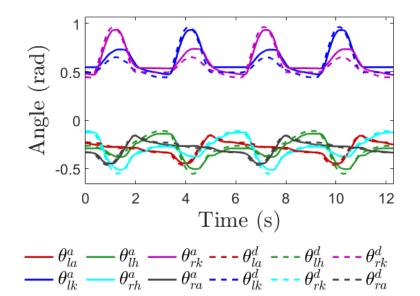
Settlements for Unified QP

w/ COM terminal Constraints

w/o COM terminal Constraints



Experiment



Conclusion

- We proposed a novel method of combing real-time walking pattern generation and constrained nonlinear control under ZMP constraints and torque constraints.
- The unified QP have advantages of both QPs: it resolves control actions which locally stabilize nonlinear control system outputs while ensuring that these control actions are consistent with a forward horizon COM plan that satisfies ZMP constraints in the simplified model.

$$\begin{aligned} \underset{\bar{u}^{*},\bar{U}^{*},\delta^{*}}{\operatorname{argmin}} \frac{1}{2} \begin{bmatrix} \bar{u} \\ \bar{U} \\ \delta \end{bmatrix}^{T} \begin{bmatrix} H_{CLF} & 0 & 0 \\ 0 & H_{p} & 0 \\ 0 & 0 & p \end{bmatrix} \begin{bmatrix} \bar{u} \\ \bar{U} \\ \delta \end{bmatrix} + \begin{bmatrix} f_{CLF} \\ f_{p} \\ 0 \end{bmatrix}^{T} \begin{bmatrix} \bar{u} \\ \bar{U} \\ \delta \end{bmatrix} \\ \text{s.t.} \quad \begin{bmatrix} A_{eq,CLF} & 0 & 0 \\ 0 & A_{eq,p} & 0 \end{bmatrix} \begin{bmatrix} \bar{u} \\ \bar{U} \\ \delta \end{bmatrix} = \begin{bmatrix} b_{eq,CLF} \\ b_{eq,p} \end{bmatrix} \\ \begin{bmatrix} A_{iq,CLF} & 0 & -1 \\ 0 & A_{iq,p} & 0 \end{bmatrix} \begin{bmatrix} \bar{u} \\ \bar{U} \\ \delta \end{bmatrix} \leq \begin{bmatrix} b_{iq,CLF} \\ b_{iq,p} \end{bmatrix} \\ (L_{f}^{2}x_{c} + L_{f}L_{g}x_{c}\bar{u})\frac{z_{0}}{g} - x_{c} = -x_{z} \end{aligned}$$

Future work

- Completing a real-time implementation of the unified QP controller in C++.
- Robustness tests: push recovery or walking through uneven terrain are planned to be conducted.
- Further generalization and unification, such as combing footstep planning, manipulation, or time parameterization for event-based locomotion are also considered.

Thank you for your attention!

Thanks to

Dr. Pilwon Hur, Human Rehabilitation Group,

Dr. Ames, Matthew Powell, Eric Ambrose, Wen-Loong Ma, Aakar Mehra, Michael Zeagler and other members in AMBER Lab for their assistance of the hardware implementation on AMBER 3.

Q&A?

ZMP Constraints and Controller Overview

Low-level controller: QP-CLF

- Pros
 - Real-time implementations
 - Minimized control effort
 - Exploiting nonlinear full dynamics
- Cons
 - ZMP constraint only for current time-step

High-level controller: MPC

- Pros
 - Real-time implementation
 - Optimal choice considering the future prediction
 - ZMP constraint over the whole horizon
- Cons
 - Control input sequence may not be feasible
 - Simplified model may not reflect the real dynamics